GraphQL是一种由Facebook开发并于2015年开源的查询语言,用于API。它旨在使客户端能够更高效、灵活且精确地获取所需数据,解决传统REST API在数据获取上的一些痛点。以下从多个方面详细介绍:
特点
组成部分
与REST对比
1 个月前
从传统认知来看,算力、算法和数据被认为是人工智能的核心三大要素。当大模型出现后,大模型在当前人工智能发展中占据着极其重要的地位。 大模型与算法的关系:从属而非取代。传统算法的定位:算法本质是解决问题的步骤规则,如SVM、随机森林等,是AI的底层方法论。 大模型的本质:大模型是算法的一种高级形态,依托深度学习(尤其是Transformer架构)实现,其核心仍是算法逻辑的演进。例如,GPT的生成能力源于自注意力机制(算法创新),而非脱离算法的新存在。 大模型为何需要独立强调? 尽管大模型属于算法范畴,但其独特性使其具备基础设施属性: 平台化能力:如GPT-4可作为基础平台,支撑多样下游任务(写代码、客服、科研),类似操作系统。 资源门槛:训练大模型需超算集群和千亿级数据,远超传统算法,成为独立的技术-资源综合体。 生态影响:催生模型即服务(MaaS),改变行业分工(如企业无需自研模型,调用API即可)。 AI的核心能力确实高度依赖于数据、算力和大模型,但这三者并非全部。它们是推动现代AI发展的基础设施,但真正的核心能力还需结合其他关键要素,以下分层次解析: 1. 数据、算力、大模型的角色 数据:AI的“燃料”,尤其是监督学习和自监督学习依赖海量标注或无标注数据(如GPT-4训练用了数万亿词元)。 算力:硬件(如GPU/TPU集群)支撑大规模训练和推理,例如训练GPT-4需数万块GPU和数月时间。 大模型:通过参数量的增加(如千亿级参数)实现更强的泛化和多任务能力,如Transformer架构的涌现能力。 2. 被忽视的核心要素 算法创新: 数据与算力的价值需通过算法释放。例如,Transformer(2017)相比RNN的突破、扩散模型对生成任务的改进,均源于算法设计。 小样本学习(Few-shot Learning)、强化学习的策略优化(如PPO算法)证明:算法效率可弥补数据或算力的不足。 工程能力: 分布式训练框架(如Megatron、DeepSpeed)、模型压缩(量化、蒸馏)等技术,决定大模型能否实际落地。 领域知识: 医疗AI依赖专家标注和病理学知识,自动驾驶需融合传感器物理模型,说明垂直场景的壁垒远超大模型本身。 3. 未来趋势:超越“大力出奇迹” 高效训练与推理: 低功耗芯片(如神经拟态计算)、MoE架构(如Mixtral 8x7B)正降低对算力的依赖。 数据质量 vs 数量: 合成数据(如NVIDIA Omniverse)、数据清洗技术逐步减少对纯数据量的需求。 可解释性与安全: 模型对齐(Alignment)、因果推理等能力将成为下一代AI的竞争焦点(如Anthropic的Claude 3)。 4. 总结:AI的核心能力是“系统级创新” 短期:数据、算力、大模型是入场券; 长期:算法设计、跨学科融合(如神经科学)、工程优化、伦理治理等系统性能力才是关键。 类比:如同火箭需要燃料(数据)、引擎(算力)、设计(模型),但真正的突破来自材料科学(算法)与控制系统(工程)。 未来AI的竞争将不仅是资源的堆砌,而是如何用更少的资源解决更复杂的问题,这需要多维度的创新能力。
1 个月前
数据标签业务(Data Annotation / Data Labeling)是人工智能(AI)产业链中的重要环节,主要为机器学习模型提供高质量的训练数据。随着人工智能技术的广泛应用,中国的数据标注行业迎来了巨大的商业机遇,同时也面临一系列挑战。本文将从市场需求、政策环境、技术发展、产业竞争等多个维度进行分析。 一、数据标签业务的商业机遇 1. AI产业高速发展带动数据需求增长 中国人工智能产业正在快速发展,自动驾驶、智能客服、智能安防、医疗AI等领域对高质量数据标注的需求不断增长。例如: 自动驾驶:需要海量的图像、视频数据进行道路标注,如车道线、行人、交通标志等。 智能医疗:需要专业医学影像数据标注,如CT、MRI图像的病变区域标注。 电商与内容推荐:需要大量的文本、语音、图像数据进行分类、情感分析等标注。 数据质量直接决定了AI模型的性能,因此高质量的数据标注服务成为AI企业的刚需。 2. 中国具备全球领先的“数据优势” 中国的互联网和移动应用市场庞大,数据量丰富,包括社交、购物、金融、交通、医疗等多个领域的数据资源。相比欧美国家对数据隐私的严格监管,中国本土市场的数据可获取性更强,为数据标注业务提供了丰富的原材料。 3. 人力成本相对较低,适合规模化发展 尽管中国的劳动力成本逐年上升,但相比欧美仍然较低,特别是在三、四线城市和农村地区。大量低技术工人可以通过简单培训参与数据标注工作,形成规模化的数据加工产业链。 4. 政策支持及人工智能发展战略 中国政府高度重视人工智能发展,出台多项支持政策,如《新一代人工智能发展规划》,鼓励企业布局AI数据相关业务。此外,地方政府也在推动“AI+产业”落地,为数据标注公司提供政策支持、产业园区资源等。 5. 行业逐步向标准化、自动化升级 随着AI技术的发展,数据标注行业正在向更高效的方向演进: 半自动化标注:利用预训练AI模型辅助人工标注,提高效率。 智能质量控制:采用机器学习算法对标注数据进行自动审核,减少人工错误。 行业标准化:政府与企业推动建立统一的标注标准,提高数据质量。 这些趋势有助于降低成本、提高效率,使数据标注企业更具竞争力。 二、数据标签业务的商业挑战 1. 低端市场竞争激烈,价格战严重 数据标注行业进入门槛较低,导致大量小公司涌入市场,尤其是低端手工标注业务竞争激烈,利润率较低。许多企业通过压低价格争夺订单,导致行业整体盈利能力下降。行业集中度低,超500家中小标注企业竞争,图像标注单价从0.5元/张降至0.2元/张(2020-2023年),毛利率普遍低于15%。 2. 数据隐私与安全监管趋严 随着《数据安全法》《个人信息保护法》等法规的实施,数据使用的合规性要求提高,许多企业在数据收集和处理过程中需要满足严格的合规要求。这对数据标注企业提出更高的合规成本,如: 数据脱敏处理:需要去除敏感信息,增加处理成本。 数据存储合规性:要求数据存储在国内,并满足安全要求。 3. 业务同质化,缺乏技术壁垒 目前市场上的数据标注公司大多依赖人力,缺乏自主技术创新,难以形成核心竞争力。随着AI自动化标注技术的进步,传统的纯人工标注模式可能被取代,低端数据标注公司面临淘汰风险。 4. AI自动化标注技术的冲击 AI本身的发展正在威胁传统人工数据标注市场。例如: 计算机视觉:自动图像识别和标注技术正在进步,减少人工标注需求。 自然语言处理(NLP):自动文本分析工具可以降低文本标注的人工需求。 虽然完全替代人工标注还需时间,但对于低难度标注任务,AI已经可以大幅减少人工参与。 5. 客户集中度高,议价能力低 目前中国数据标注市场的大客户主要是科技巨头(如BAT、华为、字节跳动等),这些企业的议价能力极强,小型标注公司难以获取高利润订单。此外,大型科技公司正在自建数据标注团队,减少对外部供应商的依赖,使数据标注企业的市场空间进一步压缩。 三、未来发展方向与建议 1. 向高价值标注业务转型 企业应避免陷入低端市场的价格战,转向更专业化、高价值的标注领域,如: 医疗AI标注(高精度医学影像、基因数据) 自动驾驶高精度3D点云标注 金融数据标注(信用风险评估、反欺诈分析) 这些领域要求专业知识,竞争相对较小,利润率更高。 2. 发展智能标注平台,提高自动化水平 企业应开发自有标注平台,结合AI自动化工具,提升标注效率。例如: 采用预标注+人工审核模式,提高效率。 发展众包平台,让自由职业者参与标注任务,降低成本。 引入区块链溯源技术,提高数据可信度。 3. 加强数据安全与合规管理 数据合规是未来发展的关键,建议: 采用数据脱敏技术,确保用户隐私安全。 获得ISO 27001信息安全认证,增强市场信任度。 避免使用敏感数据,规避法律风险。 4. 拓展海外市场 相比中国市场竞争激烈,欧美市场的数据标注需求仍然较大,且愿意支付更高的价格。可以通过合作或跨境平台提供数据标注服务,拓展海外业务。 5. 与AI企业深度合作,提供定制化服务 与AI企业建立深度合作,提供更符合客户需求的标注服务,如: 嵌入式标注服务(在AI开发平台上直接提供标注服务) 数据增强+标注(同时提供数据扩增和标注服务) SaaS模式标注平台(提供在线标注工具,企业自行标注) 四、结论 中国的数据标签行业正处于快速发展阶段,市场潜力巨大,但也面临激烈竞争和技术变革带来的挑战。未来,企业应摆脱低端市场竞争,向高价值、智能化、合规化方向发展,才能在行业中占据更有利的位置。同时,通过国际化布局和技术创新,也能进一步拓展市场空间,实现长期增长。 (图片来源:levity.ai)
2 个月前
如何整合大模型API并提供开发者服务 随着人工智能技术的快速发展,越来越多的开发者希望在自己的应用中集成AI能力,如自然语言处理、图像生成、语音识别等。如果你计划搭建一个AI平台,并向开发者(B2C)提供AI API服务,那么本文将详细介绍如何整合现有大模型的API,并成为官方分销商。 1. 选择合适的大模型API 当前市场上已有多个强大的AI大模型提供API服务,以下是几家主流供应商: OpenAI(ChatGPT/GPT-4):适用于通用对话、文本生成、代码补全等。 Anthropic(Claude):擅长安全对话和长文本理解。 Google Gemini(原Bard):适合多模态(文本、图像)AI应用。 Mistral AI:提供高效、开源的AI模型,适合灵活集成。 Hugging Face:开放API,可用于多种NLP任务。 Stable Diffusion/DALL·E:用于图像生成。 Whisper API:优秀的语音识别能力。 选择API时,需要考虑成本、调用限制、商业许可、模型能力等因素。 2. 如何获得大模型API的分销权限? 如果你希望不仅是API的用户,还能将API分发给开发者,需要与AI公司建立更深层次的合作关系。不同公司有不同的合作方式: OpenAI(ChatGPT/GPT-4) 标准API使用:直接在OpenAI官网注册并获取API Key。 企业级API访问:通过 OpenAI Enterprise 申请更高额度的API。 成为OpenAI API Reseller(API分销商):需要直接联系OpenAI商务团队(sales@openai.com)并提供业务计划,通常要求较大的流量或消费额度。 Anthropic(Claude) 访问 Anthropic API 并申请企业合作。 需要提供详细的业务应用场景,并确保数据安全合规。 直接联系 sales@anthropic.com 申请API分销权限。 Google Gemini(原Bard) 使用 Google AI Studio 获取API。 申请Google Cloud AI企业级API,并与Google商务团队合作。 通过 Google Cloud AI Solutions 申请大规模API使用权限。 Mistral AI 访问 Mistral API 并申请企业级合作。 直接联系 Mistral 商务团队申请API分销许可。 Hugging Face 访问 Hugging Face Inference API。 联系 Hugging Face 申请企业API许可,并可能合作进行API优化。 3. 技术架构:如何整合多个API? 如果你希望提供一个集成多个AI API的服务平台,你需要构建一个API管理系统,包括: (1)API网关与管理 API网关(API Gateway):使用 Kong、AWS API Gateway、Apigee 统一管理所有API。 身份认证(Authentication):使用 JWT Token 或 OAuth2 进行用户管理。 负载均衡与缓存:结合 Redis 或 Cloudflare 优化API请求速度。 (2)用户管理与计费系统 API密钥管理:允许用户注册并申请API Key。 调用监控与限流:防止滥用,确保稳定性。 计费系统:使用 Stripe、PayPal 提供按量计费或订阅计划。 (3)前端支持与开发者体验 API文档:使用 Swagger UI 或 Redoc 提供清晰的API说明。 SDK支持:开发 Python/Node.js SDK 方便开发者集成。 在线测试环境:允许开发者在Web端试用API调用。 4. 商业模式:如何盈利? 如果你计划向开发者提供API服务,可以采用以下盈利模式: (1)免费+付费模式 提供 免费调用额度(如每月100次),超出后按量付费。 按不同模型提供不同的价格(GPT-4 高级版 vs GPT-3.5 免费版)。 (2)订阅模式 个人套餐:低价格,适合独立开发者。 企业套餐:支持高并发调用,并提供专属API密钥。 定制服务:为大型企业或团队提供专属AI API。 (3)增值服务 提供高优先级的API访问,减少延迟。 允许用户定制API模型参数,提高个性化。 结合其他工具,如AI自动化工作流、数据分析等。 5. 未来展望 随着AI技术的普及,越来越多的开发者希望将大模型能力集成到他们的产品中。如果你能整合多个AI API,并提供易用的开发者服务,将能在这一市场获得先机。通过与OpenAI、Anthropic、Google等公司建立合作,并搭建高效的API管理系统,你可以打造一个强大的AI API分发平台,为全球开发者提供优质的AI服务。 如果你有意向进入这一领域,不妨立即申请各大AI公司的企业级API,并开始搭建你的API分发平台!
4 个月前
中美 AI 竞争已进入白热化阶段,技术差距的缩小、数据瓶颈的突破以及地缘政治的影响将成为未来 AI 发展的关键因素。
4 个月前
以下是基于API调用费用的10大语言大模型价格比较表格,整理自最新公开信息: 模型名称 提供商 输入价格($/1M tokens) 输出价格($/1M tokens) 上下文长度 备注 GPT-4 OpenAI 30.00 60.00 8K 高性能模型,适合复杂任务。 GPT-4 Turbo OpenAI 10.00 30.00 128K 性价比更高,支持更长上下文。 GPT-4o OpenAI 5.00 15.00 128K 多模态模型,价格较低。 GPT-3.5 Turbo OpenAI 0.50 1.50 16K 经济实惠,适合轻量任务。 Claude 3 Opus Anthropic 15.00 75.00 200K 高性能,适合复杂任务。 Claude 3 Sonnet Anthropic 3.00 15.00 200K 性价比高,适合中等复杂度任务。 Claude 3 Haiku Anthropic 0.25 1.25 200K 轻量级,适合简单任务。 Gemini 1.5 Pro Google 3.50 10.05 1M 支持超长上下文,适合复杂任务。 Gemini 1.5 Flash Google 0.13 0.38 1M 轻量级,适合快速响应任务。 通义千问 Qwen-Max 阿里云 40.00 120.00 8K 高性能,适合复杂任务。 文心一言 ERNIE-4.0 百度 30.00 90.00 8K 高性能,适合中文任务。 讯飞星火 Spark Max 科大讯飞 0.21~0.30 0.63~0.90 32K 轻量级,适合中文任务。 Kimi Moonshot-v1 月之暗面 12.00 24.00 8K 超长上下文支持,适合复杂任务。 DeepSeek Chat DeepSeek 0.14 0.28 128K 轻量级,适合快速响应任务。 Llama 3 70B Meta 0.67 2.75 8K 开源模型,性价比高。 说明: 价格单位:所有价格以美元计,单位为每百万tokens(1M tokens)。 上下文长度:表示模型支持的上下文长度,单位为tokens。 免费额度:部分厂商提供免费额度,适合测试或轻量使用。 价格变动:API调用费用可能随厂商政策调整,建议关注官方最新公告。 如需更详细的价格信息或免费额度详情,可参考相关来源。
8 个月前
API(Application Programming Interface ),应用程序编程接口,是一组定义了软件组件之间交互的规则和协议。
8 个月前
DSK 通常指的是开发套件,英语全称为 Development Starter Kit。
8 个月前
FAISS(Facebook AI Similarity Search)是一个专门用于向量数据检索的库,提供一种高效且可扩展的方式来搜索那些在高维空间中具有相似性的向量。
9 个月前
Amazon Q是一款功能最强大的生成式 AI 助手,用于加速软件开发和利用业务数据。
9 个月前
如果在网站上接入多个大模型的 API,并且有大量用户使用你的 AI 聊天工具,可能需要向这些大模型的提供商支付一定的费用。