字节跳动Data Agent是火山引擎于2025年4月8日发布的企业数据全场景智能体。以下是关于它的介绍:
作为火山引擎的第一位AI数据专家,它聚焦企业级市场,锚定数据垂直领域,弥补通用智能体在专业细分领域的不足,致力于成为企业的“AI数据专家”。
基于大模型的推理、分析和调用工具等能力,Data Agent能够深度理解业务需求,自动开启对业务语境的理解,进行深度思考,根据问题拆解任务,罗列执行规划,并能自动调取工具处理企业内部结构化、非结构化数据,对这两类数据做深度融合分析,自动化完成撰写深度研究报告、营销活动设计等任务。
以“通过数据分析策划营销活动”为例,Data Agent能充分理解营销目标,主动拆分营销活动基础元素,通过自主思考和数据洞察产出营销方案,自动生成一对一个性化营销内容,根据不同营销时机执行具体营销任务,活动结束后生成营销效果复盘报告,总结经验并给出优化建议。
目前,火山引擎Data Agent将于4月底开放首轮体验测试,已面向企业客户开启预约。
免责声明:本网站仅提供网址导航服务,对链接内容不负任何责任或担保。
14 小时前
命令优先,而非图形界面。

3 天前
原名 Clawdbot 的灵感来自 Claude 模型加载时出现的那个“Clawd”小龙虾/爪子吉祥物。

3 天前
奥地利最知名的独立开发者 Steinberger 是全球最热的“一人公司”/“vibe-coding”代表人物之一。

3 个月前
KI-Marktplatz.com:德国AI平台公司业务介绍 AI-Marktplace(也称为KI-Marktplatz)是一家德国AI平台公司,总部位于德国(与帕德博恩大学和弗劳恩霍夫研究所等机构紧密合作),专注于为工程领域的产品开发者和团队提供定制化的AI解决方案。该平台于2020年代初推出(由联邦经济和能源部BMWk资助的“AI作为生态系统驱动者”竞赛项目),旨在通过生成式AI(GenAI)加速工业创新,帮助企业从产品构想到市场推出的全过程实现效率提升、开发时间缩短和成本降低。公司将前沿研究与实用工程经验相结合,强调无缝集成AI到现有IT系统中,避免业务中断。 业务模式 AI-Marktplatz.com 采用数字市场平台模式,连接AI解决方案提供商、专家和用户。核心是通过咨询、实施和合作伙伴生态变现: 收入来源:定制咨询服务、PoC(概念验证)开发、部署支持,以及市场交易(如AI模型和技术授权)。 价值主张:端到端支持,从用例识别到规模化部署,通常在4周内从idea到PoC,帮助企业自动化例行任务、标准化设计并提升创新潜力。 主要服务 平台的服务分为三个阶段,覆盖工程全生命周期: 用例识别(Use Case Identification):系统分析过程痛点,提供AI专家访问和个性化推荐,帮助企业识别KI应用机会(如需求工程中提升50%生产力)。 用例实施(Use Case Implementation):快速开发和测试PoC,验证AI益处并降低风险,聚焦于机械、电子、软件和系统建模。 用例 rollout(Use Case Rollout):无缝扩展和集成AI解决方案到现有系统中,支持产品生命周期管理(PLM),如变体管理和追溯性搜索。 其他扩展服务包括: AI在需求工程中的应用(生成规格文档)。 聊天助手辅助系统工程。 生成式AI在机械设计(标准化零件)、电子(SPS代码生成)和软件开发中的集成。 目标受众 主要针对工业工程团队和产品开发者,包括制造业、汽车、机械和电子行业企业(如Claas、Hella Gutmann、Diebold Nixdorf)。适合希望通过AI自动化设计、减少制造成本并加速市场引入的中型企业。 关键平台功能 AI市场:汇集AI模型、技术、基础设施和用例库,支持云端(如领先云提供商)或本地部署。 技术栈:基于客户需求选择基础模型、GenAI框架(如最新生成技术),并集成IDS(International Data Spaces)参考架构,确保数据安全和主权。 创新支持:访问研究网络,保持趋势前沿;覆盖领域包括系统建模、学科特定开发和PLM优化。 独特卖点:工业级AI集成(非通用工具),强调安全、效率和可扩展性;通过网络连接研究(如帕德博恩大学HNI)和行业实践。 合作伙伴与独特优势 合作伙伴:与研究机构(如帕德博恩大学HNI、弗劳恩霍夫IEM、ITS-OWL)和行业协会(如prostep ivip、KI Bundesverband、International Data Spaces Association)紧密合作。实际案例包括Westaflex、Übermetrics Technologies等企业的AI集成。 背书:获得acatech成员Prof. Dr.-Ing. Jürgen Gausemeier、KI Bundesverband的Vanessa Cann等专家认可,突出平台的可靠性和创新性。 独特优势:结合学术研究与企业实践,提供“即插即用”AI解决方案;强调数据主权(通过IDS),适合对隐私敏感的德国工业。 整体使命 KI-Marktplatz.com 的使命是为产品开发者提供工业适用的AI工具,解锁生成式AI在工程中的潜力。通过加速开发、提升产能和降低风险,帮助企业更快地将创新推向市场,最终推动德国工业的数字化转型。

3 个月前
2025年10月14日,沃尔玛宣布与OpenAI达成一项新的合作伙伴关系: 合作内容:消费者将能够通过AI聊天机器人ChatGPT直接购买沃尔玛的商品,包括杂货(不含生鲜食品)、家庭日用品等,并实现即时结账。山姆会员店会员还可在与AI对话过程中规划膳食、补充日常必需品,并发现新的商品。顾客需先将沃尔玛账户与ChatGPT应用进行绑定,之后在购物时点击ChatGPT应用内的“购买”按钮即可完成下单。该功能计划在今年秋季晚些时候正式上线,届时也将支持第三方卖家的商品。 合作意义:此次合作将帮助零售商更深入地了解并预测客户需求,从而让线上购物体验变得更加个性化和主动化,不再仅仅是被动响应用户搜索。 双方合作基础:沃尔玛与OpenAI在其他业务领域已有合作基础,其内部团队已采用OpenAI认证课程及ChatGPT Enterprise企业版工具。 沃尔玛的AI布局:除了与OpenAI的合作,沃尔玛还推出了自研的生成式AI购物助手“Sparky”,旨在帮助顾客发现、比较商品并完成购买。未来,该功能将进一步扩展,支持自动复购、服务预约,并能理解来自文本、图像、音频和视频等多模态输入信息。

6 个月前
语料数据(Corpus Data)是指用于训练、验证和测试语言模型的大规模结构化或非结构化文本集合。

8 个月前
ChatBI 是一种基于人工智能和自然语言处理技术的商业智能(Business Intelligence, BI)分析工具。与传统的 BI 工具不同,ChatBI 以对话交互为核心,用户可以像与人交流一样,通过自然语言对话来获取数据分析和业务洞察。这种模式大大降低了数据分析的门槛,使非技术用户也能够轻松地进行复杂的数据查询和分析。 核心功能与特点: ChatBI 的主要功能和特点体现在以下几个方面: 自然语言查询: 用户可以像和同事聊天一样,直接用中文或英文输入问题。例如,“去年各地区销售额排名”或者“本月客户流失率是多少?”。系统会自动理解意图,将语言转化为能够在数据库中执行的查询指令。 实时数据分析: ChatBI 能够连接企业的各类数据源(如数据库、Excel、ERP、CRM 等),实现实时的数据检索和分析。用户无需编写 SQL 或自定义脚本,就能得到最新的数据结果。 自动生成可视化报表: 在得到分析结果后,ChatBI 可以自动生成柱状图、折线图、饼图等多种可视化报表,帮助用户更直观地理解和展示数据。 智能洞察与建议: 结合大模型能力,ChatBI 不仅能回答具体数据问题,还能基于数据趋势主动给出业务建议。例如,自动识别异常值、预测业务走势、提醒关键风险点等。 多端集成与协作: ChatBI 支持网页、移动端、微信、钉钉等多平台接入,便于团队协作和信息共享。同时,具备权限管理和数据安全保障。 典型应用场景: ChatBI 在企业数据决策和日常运营中有广泛应用,主要包括: 日常经营分析:让管理层和业务人员随时随地查询销售、库存、利润等核心数据。 客户服务与支持:为客服团队提供快速查询客户信息、订单状态等能力,提高服务效率。 运营监控与预警:自动监控关键指标,及时发现异常,支持自动化报警。 数据驱动决策:辅助市场、财务、人力等部门做出基于数据的战略和战术决策。 技术原理与优势: ChatBI 结合了大语言模型(如 GPT)、语义理解、数据建模、知识图谱等前沿技术。它的显著优势包括: 极大降低了数据分析的技术门槛和沟通成本 提高了数据驱动决策的效率和准确性 促进了企业数据资产的流动和价值释放 未来发展趋势: 随着人工智能和大模型技术的进步,ChatBI 将更加智能化和自动化。例如,未来可能实现更深层的数据洞察、跨多源数据的联动分析、甚至自动提出业务优化建议。ChatBI 也有望成为企业智能办公的重要入口,为各类组织赋能。 总之,ChatBI 让数据分析变得像聊天一样简单,是企业智能化转型的重要工具。

10 个月前
从传统认知来看,算力、算法和数据被认为是人工智能的核心三大要素。当大模型出现后,大模型在当前人工智能发展中占据着极其重要的地位。 大模型与算法的关系:从属而非取代。传统算法的定位:算法本质是解决问题的步骤规则,如SVM、随机森林等,是AI的底层方法论。 大模型的本质:大模型是算法的一种高级形态,依托深度学习(尤其是Transformer架构)实现,其核心仍是算法逻辑的演进。例如,GPT的生成能力源于自注意力机制(算法创新),而非脱离算法的新存在。 大模型为何需要独立强调? 尽管大模型属于算法范畴,但其独特性使其具备基础设施属性: 平台化能力:如GPT-4可作为基础平台,支撑多样下游任务(写代码、客服、科研),类似操作系统。 资源门槛:训练大模型需超算集群和千亿级数据,远超传统算法,成为独立的技术-资源综合体。 生态影响:催生模型即服务(MaaS),改变行业分工(如企业无需自研模型,调用API即可)。 AI的核心能力确实高度依赖于数据、算力和大模型,但这三者并非全部。它们是推动现代AI发展的基础设施,但真正的核心能力还需结合其他关键要素,以下分层次解析: 1. 数据、算力、大模型的角色 数据:AI的“燃料”,尤其是监督学习和自监督学习依赖海量标注或无标注数据(如GPT-4训练用了数万亿词元)。 算力:硬件(如GPU/TPU集群)支撑大规模训练和推理,例如训练GPT-4需数万块GPU和数月时间。 大模型:通过参数量的增加(如千亿级参数)实现更强的泛化和多任务能力,如Transformer架构的涌现能力。 2. 被忽视的核心要素 算法创新: 数据与算力的价值需通过算法释放。例如,Transformer(2017)相比RNN的突破、扩散模型对生成任务的改进,均源于算法设计。 小样本学习(Few-shot Learning)、强化学习的策略优化(如PPO算法)证明:算法效率可弥补数据或算力的不足。 工程能力: 分布式训练框架(如Megatron、DeepSpeed)、模型压缩(量化、蒸馏)等技术,决定大模型能否实际落地。 领域知识: 医疗AI依赖专家标注和病理学知识,自动驾驶需融合传感器物理模型,说明垂直场景的壁垒远超大模型本身。 3. 未来趋势:超越“大力出奇迹” 高效训练与推理: 低功耗芯片(如神经拟态计算)、MoE架构(如Mixtral 8x7B)正降低对算力的依赖。 数据质量 vs 数量: 合成数据(如NVIDIA Omniverse)、数据清洗技术逐步减少对纯数据量的需求。 可解释性与安全: 模型对齐(Alignment)、因果推理等能力将成为下一代AI的竞争焦点(如Anthropic的Claude 3)。 4. 总结:AI的核心能力是“系统级创新” 短期:数据、算力、大模型是入场券; 长期:算法设计、跨学科融合(如神经科学)、工程优化、伦理治理等系统性能力才是关键。 类比:如同火箭需要燃料(数据)、引擎(算力)、设计(模型),但真正的突破来自材料科学(算法)与控制系统(工程)。 未来AI的竞争将不仅是资源的堆砌,而是如何用更少的资源解决更复杂的问题,这需要多维度的创新能力。
Minimax(海螺AI)已由大模型名Minimax替换原海螺AI。现海螺AI为Minimax视频生成产品名。
海螺AI