
3 小时前
Xiaomi-Robotics-0 预训练了大量跨身体机器人轨迹和视觉语言数据,使其能够获得广泛且可推广的动作生成知识,同时保持强大的VLM能力。

4 小时前
在2026年开发AI产品时,搭建一个生产级(production-grade)RAG系统已经不再是“简单接个向量数据库就行”,而是需要系统性工程化思维。以下是从0到1再到生产可用的完整路径,按实际优先级和踩坑顺序组织。 一、生产级RAG ≠ Demo级RAG 的本质区别(2025-2026共识) 维度 Demo级(常见教程) 生产级(真正能上线赚钱) 为什么重要 文档量 几MB ~ 几百页 几万 ~ 几百万文档 / 多模态 / 每天增量更新 决定了分块、索引、召回策略完全不同 召回准确率 60-75% 目标88-95%+(视场景) 差10%召回率,用户体验天差地别 延迟 2-8秒随便 <1.5秒(p95),理想<800ms 用户流失率与延迟呈指数关系 幻觉控制 看运气 需要多重机制把幻觉率压到<5% 企业客户最怕胡说八道 可维护性 脚本跑一遍就行 需要数据质量pipeline、版本控制、监控告警 半年后没人敢碰代码 成本 不care embedding + LLM + vectorDB 每月几千到几十万刀 直接影响商业模式能否跑通 二、2026年主流生产级RAG搭建完整路径(推荐路线) Phase 0:先别写代码,先做这两件事(很多人跳过直接失败) 明确业务成功标准(最重要一步) 准确率目标:≥88%(RAGAS faithfulness & answer relevancy) 幻觉率:<5% 响应时间:p95 < 2秒(或按产品定位) 支持的文档类型:PDF/Word/Excel/网页/Markdown/扫描件/表格/图片? 更新频率:实时 / 每天 / 每周? 用户问题类型:单轮 / 多轮 / 带表格 / 需要推理? 准备评估集(金标准) 至少200-500条 真实用户问题 + 人工标注的完美答案 后续所有优化都拿这个集子打分 Phase 1:数据摄入与预处理(决定天花板,占60%工作量) 现代顺序(2025-2026主流做法): 文档清洗与质量分级(最被低估的一步) 运行一个轻量文档质量打分模型(或规则+小型LLM) 分三类:Clean / Decent / Garbage Garbage类直接人工干预或低权重处理 结构化解析(别直接喂Unstructured) PDF:用Marker / PyMuPDF + table detection(Marker 2025年后很强) Word/Excel:python-docx / pandas 保留层级:标题 → 段落 → 表格 → 图片说明 → 元数据 高级Chunk策略(2026年最核心差异化点) 策略 Chunk大小 适用场景 召回提升 Fixed-size 512 token 快速验证 baseline Semantic 200-800 主流生产 +15-25% Hierarchical 父子chunk 长文档、合同、手册 +20-35% Proposition-based 小粒度命题 法律/医疗/技术文档 +30%+ 推荐起步组合:Semantic + 父子索引 + 100-200 token重叠 Phase 2:Embedding 与 向量存储(2026主流选型) Embedding模型推荐(2026.2月时点性价比排序): bge-m3 / Snowflake Arctic Embed(开源王者) voyage-3-large / Cohere embed-v4(闭源但效果顶尖) text-embedding-3-large(稳定但已被超越) 向量数据库主流选择: 场景 首选数据库 次选 备注 < 100万向量 Chroma / Qdrant本地 PGVector 开发快 100万-1亿 Qdrant / Milvus Weaviate Qdrant 2025-2026口碑最佳 亿级 + 高并发 Pinecone serverless Zilliz Cloud 省心但贵 极致私有化 pgvector + pgvectorscale Milvus standalone 强烈建议:hybrid search(dense + sparse / BM25)几乎成为2026标配。 Phase 3:检索与后处理(拉开差距的关键层) 现代检索流水线(2026主流): 用户问题 ↓ Query分类与改写(是否需要检索?多意图拆分?) ↓ 多路召回(vector + BM25 + 知识图谱等) ↓ 初筛 top-30~100 ↓ 重排序(Cohere Rerank3 / bge-reranker-v2 / flashrank) ↓ 上下文压缩 / 抽取(LLM summarize top-8) ↓ 最终给LLM的上下文(带清晰source引用) Phase 4:生成与防幻觉 Prompt工程模板(必须有): 强制要求:只用提供的内容回答 / 不知道就说不知道 / 标注来源 结构化输出(JSON)便于下游解析 防幻觉组合拳: Self-Check / Self-RAG Corrective RAG Groundedness check(RAGAS / TruLens) 后置事实核查(小模型或规则) Phase 5:评估、监控、迭代闭环(生产级灵魂) 必须上的指标: Retrieval:Recall@K, MRR, NDCG Generation:Faithfulness, Answer Relevancy, Context Precision/Recall End-to-End:用户打分 / A/B测试 / 业务指标(解决率、CSAT) 推荐工具组合(2026主流): 评估:RAGAS / DeepEval / TruLens / Phoenix 监控:LangSmith / Helicone / Phoenix / PromptLayer Orchestration:LangGraph / LlamaIndex Workflows / Haystack / Flowise(低代码) 三、2026年推荐最小可用生产技术栈(性价比最高) 极简但能上线(适合小团队) 解析 → Marker / LlamaParse 向量化 → bge-m3 或 voyage-3 向量库 → Qdrant (docker) 召回+重排 → Qdrant + bge-reranker-v2 框架 → LlamaIndex 或 LangGraph LLM → DeepSeek-R1 / Qwen2.5-72B-Instruct / Claude-3.5-Sonnet (根据预算) 评估 → RAGAS + 人工golden set 进阶企业级(已验证可支撑十万+文档) 加:混合检索 + 父子索引 + query分解 + 多路召回 + 上下文压缩 + corrective RAG + 在线监控 一句话总结2026年RAG哲学: “70%的效果提升来自于数据质量、切块策略和检索后处理;20%来自embedding和重排序模型;只有10%靠换个更强的LLM。” 先把前70%做好,后面自然水到渠成。 ( Grok )

11 小时前
AI越来越像古希腊的“神谕”(Oracle)——权威、神秘、能给出惊人准确的答案,但如果我们把探索的过程完全交给它,就等于主动放弃了人类心智最宝贵的那部分自由与创造性。

1 天前
Node.js 和 Git 是支持 AI Agent 开发、依赖管理和协作的基础工具。