
10 小时前
部署本地 OpenClaw 主要有两种主流且资料详尽的方式,你可以根据自己的技术背景和需求来选择。 我把这两种方式的流程整理成了一个概览表格,方便你快速对比和决策: 特性 方案一:Docker 部署(推荐新手) 方案二:Node.js 源码部署(适合开发者) 核心依赖 Docker, Docker Compose, Git Node.js (≥22), npm, Git 优点 环境隔离,部署和卸载干净,失败率低,适合快速体验 配置灵活,方便二次开发和调试,可直接运行最新源码 缺点 需要了解基本的 Docker 命令 对系统环境要求较高,可能遇到依赖冲突 适用人群 希望快速、稳定运行OpenClaw的用户 开发者、希望修改源码或深度定制OpenClaw的用户 方案一:使用 Docker 部署(推荐) 这种方法将 OpenClaw 运行在容器中,与你的系统环境隔离,最为稳妥。 第1步:准备工作与环境检查 在开始之前,请确保你的电脑满足最低要求:CPU ≥ 2核,内存 ≥ 4GB,磁盘空间 ≥ 20GB 。 第2步:安装通用依赖 你需要安装 Docker、Git 等工具。以下是 Linux (Ubuntu/Debian) 的示例命令,Windows 用户请手动下载安装 Docker Desktop 和 Git 。 # 1. 安装 Docker (使用阿里云镜像加速) curl -fsSL https://get.docker.com | bash -s docker --mirror Aliyun # 2. 启动 Docker 并设置开机自启 sudo systemctl start docker sudo systemctl enable docker # 3. 验证 Docker 安装 docker --version && docker compose version # 4. 安装 Git sudo apt update && sudo apt install git -y git --version 第3步:获取 OpenClaw 源码与镜像 创建工作目录,并拉取汉化版的源码和预构建的 Docker 镜像 。 # 1. 创建并进入部署目录 mkdir -p /opt/openclaw && cd /opt/openclaw # 2. 拉取2026版OpenClaw源码(汉化版) git clone https://github.com/openclaw-community/openclaw-zh.git . # 3. 拉取OpenClaw核心镜像(国内加速源) docker pull registry.cn-hangzhou.aliyuncs.com/openclaw/openclaw-core:2026-zh docker pull registry.cn-hangzhou.aliyuncs.com/openclaw/openclaw-web:2026-zh # 4. 验证镜像拉取结果 docker images | grep openclaw 第4步:初始化配置文件 复制配置文件模板并进行修改,填入你的 API Key 等重要信息 。 # 1. 复制默认配置文件 cp config/example.yaml config/config.yaml # 2. 编辑配置文件 (这里使用nano,你也可以用vim) nano config/config.yaml 找到文件中的对应部分,修改为以下内容。请务必将 你的阿里云百炼API-Key 替换为你自己的密钥 。 # ① 模型配置(替换为你的API-Key) models: providers: bailian: apiKey: "你的阿里云百炼API-Key" # <-- 在这里填入你的Key model: "bailian/qwen3-max-2026-01-23" # ② 服务端口配置 server: port: 18789 host: "0.0.0.0" # 监听所有网络接口,方便局域网内访问 # ③ 数据存储配置(本地路径) storage: local: path: "/opt/openclaw/data" 保存文件 (nano 中按 Ctrl+X,然后按 Y 确认,再按 Enter)。 第5步:启动 OpenClaw 服务 使用 Docker Compose 启动服务,并检查运行状态 。 # 1. 启动服务(后台运行) docker compose up -d # 2. 查看服务启动状态(所有容器应为 "Up" 状态) docker compose ps # 3. (可选)查看启动日志,确保无错误 docker compose logs -f 第6步:访问并完成初始化 打开浏览器,访问 http://127.0.0.1:18789 (如果在本机) 或 http://你的局域网IP:18789。首次访问时,页面会引导你设置管理员密码,之后就可以开始使用你的 OpenClaw 了 。 方案二:使用 Node.js 从源码部署 这种方式更贴近开发环境,适合需要定制功能的用户。 第1步:安装 Node.js 环境 OpenClaw 需要 Node.js 22 或更高版本 。推荐使用 NodeSource 仓库进行安装。 # 1. 添加 NodeSource 仓库 (以 Node.js 22 为例) curl -fsSL https://deb.nodesource.com/setup_22.x | sudo -E bash - # 2. 安装 Node.js sudo apt install -y nodejs # 3. 验证安装 node -v # 应显示 v22.x.x 或更高 npm -v # 4. (可选) 配置 npm 国内镜像加速 npm config set registry https://registry.npmmirror.com 第2步:安装 OpenClaw 官方提供了一个一键安装脚本,会自动完成全局安装 。 # macOS / Linux 系统执行 curl -fsSL https://openclaw.ai/install.sh | bash 安装脚本执行完成后,会自动进入一个名为 onboard 的交互式设置向导。如果向导中断,你可以随时通过 openclaw onboard --install-daemon 命令重新启动 。 第3步:处理可能遇到的问题 command not found 错误: 安装后如果找不到 openclaw 命令,通常是因为 npm 的全局安装目录不在系统的 PATH 环境变量中。你可以通过 npm prefix -g 找到该目录(例如 /usr/local),然后将 export PATH="$(npm prefix -g)/bin:$PATH" 添加到你的 ~/.bashrc 或 ~/.zshrc 文件中,并执行 source ~/.bashrc 使其生效 。 sharp 模块安装失败: 在某些系统上,可能会遇到图像处理库 sharp 的安装错误。可以尝试设置环境变量绕过本地编译:SHARP_IGNORE_GLOBAL_LIBVIPS=1 npm install -g openclaw@latest 。 第4步:运行 OpenClaw 完成配置后,你可以通过以下命令启动 OpenClaw 的 Gateway 核心服务 : openclaw gateway 然后,打开浏览器访问 http://127.0.0.1:18789 即可看到 Web 控制台界面 。 总的来说,对于大多数想要本地尝鲜的朋友,我强烈建议使用 Docker 方案,它足够简单且不容易把系统环境弄乱。如果你是个喜欢折腾的开发者,希望深入定制 OpenClaw 的能力,那么 Node.js 源码部署会更适合你。

1 天前
2026年2月,维也纳这座古典音乐之都意外成为AI开源社区的焦点。继旧金山ClawCon之后,OpenClaw(中文社区昵称“小龙虾”或“龙虾”)的欧洲首场线下盛会——ClawCon Vienna顺利举办,吸引了约500名开发者、创业者、AI爱好者和非技术背景的“蟹教徒”齐聚一堂。现场能量爆棚,原定场地直接爆满,主办方紧急加开直播点,线上线下同步狂欢。这场聚会不仅是技术分享,更是“养龙虾”亚文化的一次集体高光。 Peter Steinberger:家乡英雄的“衣锦还乡” OpenClaw创始人Peter Steinberger(中文圈常称“虾爸”或“龙虾之父”)是奥地利本地人,曾就读维也纳工业大学,早年创办PSPDFKit(移动PDF解决方案公司),2021年以高价出售大部分股份后一度“退休”。2025年底,他重出江湖推出Clawdbot(后更名为OpenClaw),一个完全本地运行、开源的自主AI Agent框架,支持多模型调用、工具集成和复杂任务执行。 在维也纳大会上,Peter以“回家”姿态登台,分享了项目从车库原型到全球现象的历程。他强调OpenClaw的核心理念:让普通人也能轻松拥有强大AI能力,无需编程门槛,就能让Agent完成从酿啤酒配方生成到模拟小型公司运营的各种任务。现场开发者分享真实案例,有人用它自动化职场周报,有人构建个人知识库,还有人让它24小时监控市场情报。企业家和开发者一致认为,“Agent经济”已在悄然成型,而OpenClaw正成为这场革命的先锋。 从聊天框“逃离”:3D可视化与具身进化 大会最亮眼的Demo之一来自开发者Dominik Scholz。他基于OpenClaw打造了一个3D交互界面(使用Three.js + Electron),将Agent的推理过程从线性文本“解放”到三维空间:思考路径如星云扩散、决策节点如能量流,用户可以从“驾驶舱视角”直观观察AI内部逻辑,避免传统黑盒体验。 这一展示呼应了社区共识:未来的AI Agent不应永远困在对话框里,而应向更沉浸、更具情绪价值的形态进化。有人开玩笑说,早期的“soul.md”文件被删是为了“净化灵魂”,但也反映出大家对AI具身化、元宇宙式交互的热情探索。 史上首款“龙虾手机”亮相:25美元实现廉价具身AI 另一个重磅炸场的是开发者Marshall的ClawPhone项目。他在一台仅售25美元的廉价手机上安装OpenClaw,并授予完整硬件权限。Agent可直接调用麦克风、摄像头、短信、打印机等,实现实时TTS(语音合成)、浏览器自动化、短信预约、设备远程控制等功能。 现场演示中,ClawPhone通过打印机错误音“哔哔”反馈任务状态、WhatsApp审批流程、甚至自主预约日程。Marshall认为,这种极客玩具预示未来:每个房间、实验室或小型机器人可能都配备类似廉价“龙虾终端”——断网也能运行,极端情况下“一锤砸掉”即可关停,形成分布式、去中心化的具身AI节点。 全球“养龙虾”浪潮:从旧金山到维也纳,再到亚洲 ClawCon Vienna是OpenClaw全球化扩张的又一里程碑。上周旧金山首场ClawCon已吸引超1000人,韩国AI女友项目Clawra上线后一夜爆火。全球开发者正围绕OpenClaw构建技能市场、Prompt库、多Agent协作系统,从单一工具演变为活跃开源生态。 维也纳的狂欢证明:OpenClaw已超越技术本身,成为一种社区文化现象。“蟹教徒”“虾粮”“蜕皮进化”“龙虾大逃杀”等梗在中文圈刷屏,英文社区也同步玩梗。项目从本地运行到硬件具身、从聊天框到3D空间,正在以惊人速度进化。 结语:小龙虾的下一个蜕皮 维也纳ClawCon不是终点,而是OpenClaw“征服全世界”叙事的又一章。Peter Steinberger的回归、社区的狂热、硬件的创新,都在告诉我们:开源AI Agent的春天来了,而“小龙虾”正以最意想不到的方式,搅动整个行业。

3 天前
Xiaomi-Robotics-0 预训练了大量跨身体机器人轨迹和视觉语言数据,使其能够获得广泛且可推广的动作生成知识,同时保持强大的VLM能力。

3 天前
在2026年开发AI产品时,搭建一个生产级(production-grade)RAG系统已经不再是“简单接个向量数据库就行”,而是需要系统性工程化思维。以下是从0到1再到生产可用的完整路径,按实际优先级和踩坑顺序组织。 一、生产级RAG ≠ Demo级RAG 的本质区别(2025-2026共识) 维度 Demo级(常见教程) 生产级(真正能上线赚钱) 为什么重要 文档量 几MB ~ 几百页 几万 ~ 几百万文档 / 多模态 / 每天增量更新 决定了分块、索引、召回策略完全不同 召回准确率 60-75% 目标88-95%+(视场景) 差10%召回率,用户体验天差地别 延迟 2-8秒随便 <1.5秒(p95),理想<800ms 用户流失率与延迟呈指数关系 幻觉控制 看运气 需要多重机制把幻觉率压到<5% 企业客户最怕胡说八道 可维护性 脚本跑一遍就行 需要数据质量pipeline、版本控制、监控告警 半年后没人敢碰代码 成本 不care embedding + LLM + vectorDB 每月几千到几十万刀 直接影响商业模式能否跑通 二、2026年主流生产级RAG搭建完整路径(推荐路线) Phase 0:先别写代码,先做这两件事(很多人跳过直接失败) 明确业务成功标准(最重要一步) 准确率目标:≥88%(RAGAS faithfulness & answer relevancy) 幻觉率:<5% 响应时间:p95 < 2秒(或按产品定位) 支持的文档类型:PDF/Word/Excel/网页/Markdown/扫描件/表格/图片? 更新频率:实时 / 每天 / 每周? 用户问题类型:单轮 / 多轮 / 带表格 / 需要推理? 准备评估集(金标准) 至少200-500条 真实用户问题 + 人工标注的完美答案 后续所有优化都拿这个集子打分 Phase 1:数据摄入与预处理(决定天花板,占60%工作量) 现代顺序(2025-2026主流做法): 文档清洗与质量分级(最被低估的一步) 运行一个轻量文档质量打分模型(或规则+小型LLM) 分三类:Clean / Decent / Garbage Garbage类直接人工干预或低权重处理 结构化解析(别直接喂Unstructured) PDF:用Marker / PyMuPDF + table detection(Marker 2025年后很强) Word/Excel:python-docx / pandas 保留层级:标题 → 段落 → 表格 → 图片说明 → 元数据 高级Chunk策略(2026年最核心差异化点) 策略 Chunk大小 适用场景 召回提升 Fixed-size 512 token 快速验证 baseline Semantic 200-800 主流生产 +15-25% Hierarchical 父子chunk 长文档、合同、手册 +20-35% Proposition-based 小粒度命题 法律/医疗/技术文档 +30%+ 推荐起步组合:Semantic + 父子索引 + 100-200 token重叠 Phase 2:Embedding 与 向量存储(2026主流选型) Embedding模型推荐(2026.2月时点性价比排序): bge-m3 / Snowflake Arctic Embed(开源王者) voyage-3-large / Cohere embed-v4(闭源但效果顶尖) text-embedding-3-large(稳定但已被超越) 向量数据库主流选择: 场景 首选数据库 次选 备注 < 100万向量 Chroma / Qdrant本地 PGVector 开发快 100万-1亿 Qdrant / Milvus Weaviate Qdrant 2025-2026口碑最佳 亿级 + 高并发 Pinecone serverless Zilliz Cloud 省心但贵 极致私有化 pgvector + pgvectorscale Milvus standalone 强烈建议:hybrid search(dense + sparse / BM25)几乎成为2026标配。 Phase 3:检索与后处理(拉开差距的关键层) 现代检索流水线(2026主流): 用户问题 ↓ Query分类与改写(是否需要检索?多意图拆分?) ↓ 多路召回(vector + BM25 + 知识图谱等) ↓ 初筛 top-30~100 ↓ 重排序(Cohere Rerank3 / bge-reranker-v2 / flashrank) ↓ 上下文压缩 / 抽取(LLM summarize top-8) ↓ 最终给LLM的上下文(带清晰source引用) Phase 4:生成与防幻觉 Prompt工程模板(必须有): 强制要求:只用提供的内容回答 / 不知道就说不知道 / 标注来源 结构化输出(JSON)便于下游解析 防幻觉组合拳: Self-Check / Self-RAG Corrective RAG Groundedness check(RAGAS / TruLens) 后置事实核查(小模型或规则) Phase 5:评估、监控、迭代闭环(生产级灵魂) 必须上的指标: Retrieval:Recall@K, MRR, NDCG Generation:Faithfulness, Answer Relevancy, Context Precision/Recall End-to-End:用户打分 / A/B测试 / 业务指标(解决率、CSAT) 推荐工具组合(2026主流): 评估:RAGAS / DeepEval / TruLens / Phoenix 监控:LangSmith / Helicone / Phoenix / PromptLayer Orchestration:LangGraph / LlamaIndex Workflows / Haystack / Flowise(低代码) 三、2026年推荐最小可用生产技术栈(性价比最高) 极简但能上线(适合小团队) 解析 → Marker / LlamaParse 向量化 → bge-m3 或 voyage-3 向量库 → Qdrant (docker) 召回+重排 → Qdrant + bge-reranker-v2 框架 → LlamaIndex 或 LangGraph LLM → DeepSeek-R1 / Qwen2.5-72B-Instruct / Claude-3.5-Sonnet (根据预算) 评估 → RAGAS + 人工golden set 进阶企业级(已验证可支撑十万+文档) 加:混合检索 + 父子索引 + query分解 + 多路召回 + 上下文压缩 + corrective RAG + 在线监控 一句话总结2026年RAG哲学: “70%的效果提升来自于数据质量、切块策略和检索后处理;20%来自embedding和重排序模型;只有10%靠换个更强的LLM。” 先把前70%做好,后面自然水到渠成。 ( Grok )