
以下列出 CELUS Design Platform 的核心功能模块及其作用:
需求定义 (Define)
组件选型与原理图生成 (Design)
开发/输出 (Develop)
模块化/知识库 (CUBO) 支持
适用场景
注意事项/限制
CELUS Design Platform 是一款以 “从需求定义 → 组件选型 → 原理图/BOM生成” 为主线,通过 AI 和模块化(CUBO)技术加速电子硬件设计流程的软件平台。对于硬件设计工程师、系统架构师、电子产品开发团队而言,它提供了一条更快捷、标准化、智能化的路径。
如果你愿意,我可以帮你查找该工具在 汽车零部件/工业设备领域的案例,以及它在德国市场的授权/定价情况。要不要?
免责声明:本网站仅提供网址导航服务,对链接内容不负任何责任或担保。
12 天前
简要结论:物理AI(Physical AI)正在成为人工智能发展的新方向,它的现实性在于能否真正理解并遵循物理规律。目前已有测试框架和硬件架构推动落地,但仍存在显著差距,现实应用需要长期迭代。 🧩 什么是“物理AI” 定义:物理AI强调让人工智能不仅能生成文本或图像,还要能在现实世界中遵循物理定律,具备“具身智能”(Embodied AI)的能力。 目标:解决 AI 在仿真到现实(Sim-to-Real)转化中的落地难题,让机器人、自动驾驶、数字孪生等应用更可靠。 🔍 当前研究进展 PAI-Bench 测试框架:佐治亚理工学院与卡内基梅隆大学团队提出的标准,用于评估 AI 是否理解物理规律。测试包含 2808 个真实案例,涵盖自动驾驶预测、机器人操作等场景。结果显示:人类准确率约 93.2%,而最佳 AI 模型仅 64.7%。 英伟达“物理AI”战略:在 CES 2026 提出,基于 Vera Rubin 超算平台 + Omniverse 仿真环境 + Jetson T4000 边缘硬件,构建闭环架构,强调“不要只生成像素,要生成行动”。 ✅ 现实性分析 优势: 技术驱动:硬件(GPU、边缘计算)和仿真平台(Omniverse)已具备支撑条件。 应用需求强烈:自动驾驶、机器人、工业制造等都需要 AI 遵循物理规律。 研究路径明确:已有标准化测试框架(PAI-Bench),为模型改进提供方向。 局限: 理解不足:现有模型在物理推理上的表现远低于人类水平。 数据难题:物理规律涉及连续性和复杂交互,难以通过大规模数据直接学习。 落地成本高:需要强算力、精细仿真和高性能硬件,短期内难以普及。 ⚠️ 风险与挑战 幻觉问题:AI可能生成视觉效果逼真但违反物理规律的结果。 安全性:在自动驾驶或机器人场景中,错误的物理推理可能导致事故。 标准缺失:虽然有 PAI-Bench,但行业尚未形成统一的评估体系。 🎯 综合评价 物理AI的现实性在于“方向明确、路径清晰,但短期难以完全落地”。 它更像是未来十年 AI 的关键突破口:从“生成像素”走向“生成行动”。目前仍处于探索阶段,但随着硬件、仿真和测试框架的成熟,物理AI有望逐步应用于自动驾驶、机器人和工业场景。

1 个月前
YOLO(You Only Look Once),这确实是目前计算机视觉领域最热门、应用最广泛的目标检测算法之一。 简单来说,如果把计算机看作一个学生,传统的检测算法像是让学生“拿着放大镜,一点点扫描图片里有什么”,而 YOLO 则是让学生“一眼扫过整张图,立刻说出图里有什么、在哪儿”。 这种“一眼识别”的特性,让 YOLO 在速度和准确性上取得了极佳的平衡。结合掌握的资料,这里为你详细拆解一下 YOLO 的核心原理、发展历程以及它在现实中的应用。 🧠 YOLO 的核心工作原理:像人眼一样“扫视” YOLO 的核心思想是将目标检测问题转化为一个回归问题。它不需要像旧算法(如 R-CNN)那样先猜区域再识别,而是通过一次神经网络计算,直接从图像像素回归出物体的位置和类别。 我们可以把它的工作流程想象成老师给班级分组: 网格划分(Grid Cells): 算法会将输入的图像划分为 S times S 个小格子(例如 7x7)。如果一个物体的中心点落在某个格子里,那个格子就“负责”检测这个物体。 边界框预测(Bounding Boxes): 每个格子会预测出几个边界框(例如 2 个),每个框包含 5 个参数:中心坐标 (x, y)、宽 w、高 h 以及一个置信度(表示框里确实有物体的概率)。 类别概率(Class Probabilities): 同时,每个格子还会预测这个框内物体属于各个类别的概率(比如是猫的概率 80%,是狗的概率 5%)。 非极大值抑制(NMS): 因为多个格子可能会检测到同一个物体,最后会通过 NMS 算法“去重”,保留得分最高的框,去掉重叠度高且得分低的框。 📈 从 V1 到 V8:YOLO 的进化之路 YOLO 算法自 2015 年诞生以来,经历了多次重大的架构升级。为了让你更直观地了解,这里整理了主要版本的演进逻辑: YOLOv1: 首次提出“单阶段检测”概念,将检测视为回归问题。 开创性工作,速度快,但小目标检测精度一般。 YOLOv2/v3: 引入 Anchor Boxes(先验框)和多尺度预测。 检测精度大幅提升,尤其是小物体。v3 成为经典里程碑。 YOLOv4: 集成了大量优化技巧(CSPDarknet, PANet, Mosaic数据增强)。 在保持速度的同时,精度达到了当时的顶尖水平。 YOLOv5: 基于 PyTorch 实现,工程化极佳。 极易上手,提供了从小到大的多种模型(s/m/l/x),部署方便,工业界主流。 YOLOv8: 最新主流版本,进一步优化了架构和损失函数。 性能更强,支持分类、检测、分割等多种任务,是目前的首选之一。 💡 为什么 YOLO 如此受欢迎? ⚡ 极快的速度: 由于只需要“看一次”,YOLO 可以轻松达到实时处理(如 45 FPS 甚至更高),非常适合处理视频流。 🌍 全局视野: 它在预测时利用了整张图的上下文信息,因此在背景中误检(把背景当作物体)的概率比两阶段算法要低。 🛠️ 强大的泛化能力: 它学习到的特征具有很好的通用性,迁移到其他数据集上通常也能取得不错的效果。 🚀 实际应用场景 基于 YOLO 的这些特性,它在很多领域都有广泛的应用: 📹 智慧安防: 实时监控画面中的人体检测、异常行为识别。 🚗 自动驾驶: 识别道路上的车辆、行人、交通标志,为车辆决策提供依据。 🏭 工业质检: 在生产线上快速识别产品缺陷、零件缺失或错位。 🏥 医疗影像: 辅助医生识别 X 光片或 CT 图像中的病变区域(如肿瘤)。 📦 物流分拣: 识别包裹上的条形码或分类标签。 💡 对初学者的建议 如果想入门或使用 YOLO 进行图像识别: 新手入门: 推荐从 YOLOv5 或 YOLOv8 开始。它们的官方文档非常完善,代码(通常是 PyTorch 版本)易于理解,且社区支持丰富。 数据准备: 图像识别的效果很大程度上取决于数据。你需要准备标注好的数据集(通常标注工具会生成 .txt 或 .xml 文件,标明物体的类别和坐标)。 硬件要求: 虽然 YOLO 很快,但训练过程通常还是需要 GPU(如 NVIDIA 显卡)来加速。

2 个月前
德国的热门AI工具推荐 德国作为欧洲AI创新中心,涌现出众多注重数据隐私、工业应用和多语言处理的优秀AI工具。这些工具多由本土初创公司或企业开发,用户反馈(基于Clutch、GoodFirms、Slashdot等平台的评论)突出其准确性、易用性和合规性(如GDPR)。以下是几款用户高度评价的代表性工具,我根据用户评分(4.5+分)、下载量和实际应用场景筛选。它们覆盖翻译、自动化、NLP等领域,许多工具免费试用或开源。 工具名称 主要功能 为什么用户赞誉 用户评分(来源) 适用场景 DeepL 神经网络机器翻译,支持30+语言,包括德英等高精度翻译。 用户称其翻译自然流畅,胜过Google Translate;隐私保护强,适合企业文档。 4.8/5 (Slashdot, 10k+ reviews) 商务邮件、学术论文翻译;免费版无限使用。 Haystack (by deepset) 开源NLP框架,用于构建搜索、问答和聊天机器人。 开发者赞其灵活性高、易集成;企业用户反馈部署快,准确率达95%。 4.7/5 (GoodFirms, GitHub stars 15k+) 企业知识库、智能客服;开源免费。 n8n 低代码工作流自动化,支持400+集成(如Slack、Google)。 用户爱其可视化拖拽界面,节省开发时间;社区活跃,扩展性强。 4.6/5 (SourceForge, 50k+ users) 营销自动化、数据同步;自托管版免费。 LanguageTool AI语法检查和风格优化,支持多语言写作辅助。 写作用户称其纠错精准,避免awkward表达;集成Word/浏览器无缝。 4.9/5 (Slashdot, 1M+ downloads) 报告撰写、内容创作;免费版基本功能全覆盖。 Celus AI电子设计自动化,生成电路图和PCB布局。 工程师反馈开发时间减90%;初创友好,减少手动错误。 4.7/5 (GoodFirms, Clutch reviews) 硬件原型设计;订阅制,试用免费。 Ada Health AI症状评估App,提供个性化医疗建议。 用户(患者/医生)赞其多语言支持和准确性;欧盟认证,隐私可靠。 4.8/5 (App Store, 5M+ downloads) 健康咨询;免费下载,高级版订阅。 neuroflash AI内容生成平台,专注营销文案和SEO优化。 营销团队称生成速度快、个性化强;减少创作时间70%。 4.6/5 (DesignRush, user testimonials) 社交媒体帖、广告文案;免费试用1000字。 Black Forest Labs (FLUX.1) 开源图像生成模型,支持高分辨率艺术/设计创作。 创作者反馈细节丰富、开源灵活;Elon Musk等名人推荐。 4.7/5 (Hugging Face, 100k+ downloads) 视觉设计、NFT艺术;开源免费。 这些工具的用户好评主要源于德国AI的“实用主义”风格:强调可靠性和欧盟合规,而非花哨功能。建议从DeepL或n8n起步,根据需求扩展。如果你有特定领域(如医疗或编程),我可以进一步细化推荐。

2 个月前
构建像IPAI这样的生态系统对于汇集资源和推动人工智能发展至关重要。

3 个月前
恒图科技是一家专注于数字创意视觉内容创作与人工智能技术融合的文化科技型企业。恒图科技(成都恒图科技有限责任公司)在数字视觉内容创作和人工智能领域具有全球影响力,尤其以其核心产品Fotor而闻名。 这里是公司及业务概览: 类别 详细信息 公司名称 成都恒图科技有限责任公司 成立时间 2009年 创始人/CEO 段江 公司定位 专注于视觉内容创作与人工智能融合创新的科技型企业 核心产品 Fotor (图片处理与设计软件)、Clipfly (AI视频制作平台) 技术核心 HDR(高动态范围图像)技术、生成式人工智能(AIGC) 市场与用户 覆盖全球200多个国家和地区,用户量约7-8亿,绝大部分为海外用户 主要荣誉 2025年福布斯中国人工智能科技企业TOP50、德勤中国高科技高成长50强 🚀 发展历程与核心优势 恒图科技的发展历程,是一部深耕技术、顺势而为的进化史。 技术奠基与出海:公司自成立起就专注于图像处理技术,尤其在HDR(高动态范围图像)技术领域拥有领先的核心专利。早期,团队就做出了一个关键决策:主攻海外市场,打造标准化的产品。其产品因操作简单、效果专业,迅速获得了海外用户的认可,BBC曾将Fotor誉为“Photoshop的后继者”。 拥抱AI浪潮:当生成式人工智能(AIGC)兴起时,恒图科技展现了强大的技术敏锐度和快速反应能力。他们在2022年10月就为Fotor上线了AI功能,并逐步将产品从单一的图片编辑,拓展为涵盖AI文生图、AI文生视频等超100种功能的一站式AI视觉内容创作平台。这不仅吸引了更多用户,也让他们成为国内为数不多在该领域实现规模化盈利的企业。 强大的技术合作:为了支撑全球海量用户的创作需求,恒图科技与火山引擎展开了深度合作。火山引擎为其提供了强大的AI算力保障,支撑了恒图超过80%的推理和训练任务。这一合作显著提升了其AI视频生成的能力与质量,帮助恒图实现了用户付费转化率提升23%、AI人均视频生成次数提升12%的亮眼成绩。 🛠️ 主要产品与应用 恒图科技的产品矩阵紧密围绕“让创作更简单”这一核心目标展开。 Fotor:这是恒图科技的旗舰产品。它不仅仅是一个修图工具,更是一个覆盖网页端、移动端和桌面端的一体化设计平台。通过引入AI技术,Fotor极大地降低了专业设计的门槛,让没有任何设计背景的普通用户也能轻松制作海报、社交媒体图片等。 Clipfly:这是恒图科技推出的一站式AI视频制作平台。它集成了文生视频、图生视频、自动字幕、视频编辑等功能,让一个人、一台电脑就能快速完成具有电影质感的视频创作,极大地降低了视频创作的成本和门槛。该产品在文旅宣传、内容创作等领域有很好的应用前景。 🌍 行业影响与未来前景 恒图科技的成功,不仅在于商业上的成就,更在于其带来的行业变革与文化价值。 推动创作“智能化”:恒图科技将自己定位为数字创意创作“智能化”的推动者。如果说Photoshop代表了“专业化”,Canva代表了“平民化”,那么Fotor的目标就是通过AI技术,将视觉内容创作带入“全民皆可为的智能化时代”。 架起文化出海桥梁:恒图科技的产品拥有庞大的海外用户群,这使其成为中国文化出海的一个独特渠道。通过Fotor、Clipfly等产品,中国传统的文化元素、IP可以以图像、视频等更易被接受的形式传播到全球,促进跨文化的交流与理解。 ( 图片来源:fotor.com.cn )

3 个月前
KI-Marktplatz.com:德国AI平台公司业务介绍 AI-Marktplace(也称为KI-Marktplatz)是一家德国AI平台公司,总部位于德国(与帕德博恩大学和弗劳恩霍夫研究所等机构紧密合作),专注于为工程领域的产品开发者和团队提供定制化的AI解决方案。该平台于2020年代初推出(由联邦经济和能源部BMWk资助的“AI作为生态系统驱动者”竞赛项目),旨在通过生成式AI(GenAI)加速工业创新,帮助企业从产品构想到市场推出的全过程实现效率提升、开发时间缩短和成本降低。公司将前沿研究与实用工程经验相结合,强调无缝集成AI到现有IT系统中,避免业务中断。 业务模式 AI-Marktplatz.com 采用数字市场平台模式,连接AI解决方案提供商、专家和用户。核心是通过咨询、实施和合作伙伴生态变现: 收入来源:定制咨询服务、PoC(概念验证)开发、部署支持,以及市场交易(如AI模型和技术授权)。 价值主张:端到端支持,从用例识别到规模化部署,通常在4周内从idea到PoC,帮助企业自动化例行任务、标准化设计并提升创新潜力。 主要服务 平台的服务分为三个阶段,覆盖工程全生命周期: 用例识别(Use Case Identification):系统分析过程痛点,提供AI专家访问和个性化推荐,帮助企业识别KI应用机会(如需求工程中提升50%生产力)。 用例实施(Use Case Implementation):快速开发和测试PoC,验证AI益处并降低风险,聚焦于机械、电子、软件和系统建模。 用例 rollout(Use Case Rollout):无缝扩展和集成AI解决方案到现有系统中,支持产品生命周期管理(PLM),如变体管理和追溯性搜索。 其他扩展服务包括: AI在需求工程中的应用(生成规格文档)。 聊天助手辅助系统工程。 生成式AI在机械设计(标准化零件)、电子(SPS代码生成)和软件开发中的集成。 目标受众 主要针对工业工程团队和产品开发者,包括制造业、汽车、机械和电子行业企业(如Claas、Hella Gutmann、Diebold Nixdorf)。适合希望通过AI自动化设计、减少制造成本并加速市场引入的中型企业。 关键平台功能 AI市场:汇集AI模型、技术、基础设施和用例库,支持云端(如领先云提供商)或本地部署。 技术栈:基于客户需求选择基础模型、GenAI框架(如最新生成技术),并集成IDS(International Data Spaces)参考架构,确保数据安全和主权。 创新支持:访问研究网络,保持趋势前沿;覆盖领域包括系统建模、学科特定开发和PLM优化。 独特卖点:工业级AI集成(非通用工具),强调安全、效率和可扩展性;通过网络连接研究(如帕德博恩大学HNI)和行业实践。 合作伙伴与独特优势 合作伙伴:与研究机构(如帕德博恩大学HNI、弗劳恩霍夫IEM、ITS-OWL)和行业协会(如prostep ivip、KI Bundesverband、International Data Spaces Association)紧密合作。实际案例包括Westaflex、Übermetrics Technologies等企业的AI集成。 背书:获得acatech成员Prof. Dr.-Ing. Jürgen Gausemeier、KI Bundesverband的Vanessa Cann等专家认可,突出平台的可靠性和创新性。 独特优势:结合学术研究与企业实践,提供“即插即用”AI解决方案;强调数据主权(通过IDS),适合对隐私敏感的德国工业。 整体使命 KI-Marktplatz.com 的使命是为产品开发者提供工业适用的AI工具,解锁生成式AI在工程中的潜力。通过加速开发、提升产能和降低风险,帮助企业更快地将创新推向市场,最终推动德国工业的数字化转型。

7 个月前
2024年8月,德国黑森林AI实验室(Black Forest Labs)正式从隐身模式走向公众视野,发布了备受瞩目的FLUX.1模型套件。这套模型在各个方面都达到了新的行业标准,迅速在AI图像生成领域掀起波澜。FLUX.1模型在用户评价中超越了Midjourney和OpenAI的DALL-E,在Hugging Face平台上的下载量占据榜首。 黑森林AI实验室在今年五月份推出的名为“Kontext”的AI模型系列,不仅能生成图像,还能在图像生成之后进行复杂的编辑。这种双重能力让Kontext在拥挤的AI视觉模型市场中脱颖而出,与市面上的DALL·E或Stable Diffusion不同,Kontext在统一架构中同时训练图像生成和编辑任务,实现更准确的图像理解与上下文编辑能力。 .

7 个月前
太阳能领域正快速融合 AI 技术,以下是当前在该领域中具有代表性的 AI 工具与平台,按用途分类整理: 🧠 一、太阳能项目选址与可行性分析 1. Aurora Solar(aurorasolar.com) 功能:屋顶建模、日照分析、经济性预测 技术:使用 AI 图像识别分析航拍图,自动识别屋顶尺寸和倾斜度 适用对象:住宅/商业屋顶光伏开发者 2. PVGIS + AI增强工具 功能:结合卫星气象数据与 AI 模型进行光照模拟和发电量预测 平台:由欧盟开发,可集成 AI 模型自行扩展 🔋 二、太阳能系统性能监测与预测维护(O\&M) 3. Raptor Maps(raptormaps.com) 功能:无人机+AI 图像识别检测光伏面板故障(如热点、碎裂、污染) 技术:深度学习自动识别热成像数据 适用对象:太阳能电站运营商、资产管理公司 4. SenseHawk(被 Reliance 收购) 功能:用 AI 进行太阳能电站生命周期管理,从设计、施工到运维 亮点:数字孪生模型、故障预测、运维效率提升 🔄 三、电站级发电预测与调度优化 5. Xendee 功能:微电网与多能系统(含太阳能)AI 优化模拟平台 用途:经济运行优化、容量规划、储能调度优化 6. Autogrid Flex 功能:AI预测负荷与太阳能产出,实时电网调度优化 适用对象:电力公司、能源服务商、聚合商(VPP) 🌐 四、全球资源分析与GIS应用 7. Solargis + AI(solargis.com) 功能:太阳辐射预测、建模、损失分析 AI用途:用于自动清洗数据、降噪、填补遥感缺失 8. Google Project Sunroof 功能:使用 AI + 卫星图像估算某一地址的太阳能潜力 适合:用户自助查询装太阳能是否划算(美国可用) 🧰 五、开发者工具 & 开源资源 9. pvlib-python + AI 模块集成 功能:开源光伏建模库,适合与机器学习框架结合,如: 使用 scikit-learn / XGBoost 做发电量预测 结合 TensorFlow 实现组件级健康预测 10. SolarAI Technologies(亚洲新兴平台) 服务:结合 Google Earth + AI 识别建筑屋顶,做户用光伏推广、商机推荐 目标:为销售团队提供自动线索生成与客户分析 📌 典型AI应用方向小结: 领域 AI应用举例 项目选址 卫星图像识别、屋顶建模、光照模拟 系统监测 无人机图像分析、热成像故障识别 发电预测 天气+历史数据机器学习建模 运维优化 故障预测、数字孪生、维护建议 智能营销 潜在客户自动识别、报价模拟 ( ChatGPT推荐 )
Minimax(海螺AI)已由大模型名Minimax替换原海螺AI。现海螺AI为Minimax视频生成产品名。
海螺AI