像搭积木一样创建业务应用
使用低代码工具,构建 网站和应用 ,创建自动化工作流,简单地创建AI Agent
您可以构建您需要的任何内部应用程序或AI工具,您也可以将AI与内部应用程序集成。 例如,仪表板、管理面板、内容管理、客户管理系统、文本生成工具、图像工具、电子邮件生成工具等。
免责声明:本网站仅提供网址导航服务,对链接内容不负任何责任或担保。2 个月前
搭建商业内容库的核心目标是收集、整理和优化可供推荐的商业文章,以支持你的关键词推荐变现模式。以下是具体的实施步骤: 1. 商业内容库的结构设计 你的内容库需要有一个清晰的结构,以便AI能够高效检索和推荐。可以采用数据库+搜索引擎索引的方式,常见技术方案如下: 数据库:MySQL / PostgreSQL / MongoDB(用于存储文章数据) 全文搜索引擎:Elasticsearch / Meilisearch(提高检索速度和匹配准确性) AI推荐系统:基于NLP和深度学习(BERT/GPT等) 表结构示例(SQL) CREATE TABLE commercial_articles ( id SERIAL PRIMARY KEY, title TEXT NOT NULL, content TEXT NOT NULL, keywords TEXT[], -- 关键词 category TEXT, -- 行业分类 company_name TEXT, -- 文章来源 created_at TIMESTAMP DEFAULT NOW() ); 这样,你可以根据关键词、行业分类和发布时间快速检索文章。 2. 采集和整理商业内容 (1)内容来源 你的商业内容库可以包含以下类型的文章: 企业官网和行业博客(公开的技术文章、白皮书) AI生成的行业分析(你可以用GPT生成企业相关的商业文章) 合作企业付费推广(企业可以提交文章,AI根据关键词推荐) 开放数据源(如政府、行业协会发布的市场报告) (2)自动化采集 使用爬虫(Scrapy)+ NLP预处理,将有价值的内容自动存入数据库。例如: 定期爬取特定行业网站的商业文章(例如制造、AI、物流等) 使用NLP提取核心关键词,以便文章能够被AI模型推荐 内容去重和质量筛选,确保高质量文章进入推荐系统 3. 商业文章的AI优化 为了让AI更精准地推荐商业文章,可以对文章进行预处理: 自动提取关键词(TF-IDF、BERT Embeddings) 生成摘要(GPT自动生成200字的文章概要) 添加行业分类标签(制造业、科技、物流等) 示例(Python代码) from transformers import pipeline summarizer = pipeline("summarization") article = """Hier steht ein langer kommerzieller Artikel über industrielle KI und ihre Auswirkungen auf die Fertigung...""" summary = summarizer(article, max_length=200, min_length=100, do_sample=False) print(summary) 这样可以让AI生成简短摘要,并在搜索结果中显示,提高用户点击率。 4. 商业内容推荐系统 你的AI问答网站需要一个智能推荐系统,可以结合: 基于内容的推荐(Content-Based Filtering) 例如:用户搜索“工业AI”,推荐与此相关的文章 基于协同过滤的推荐(Collaborative Filtering) 例如:如果多个用户搜索“展览制作”,AI发现他们也对“展台设计”感兴趣,推荐相关内容 结合深度学习的推荐(NLP+BERT) 通过语义匹配,让搜索词和商业文章的匹配更加智能 5. 商业化落地 (1)关键词触发付费内容 例如,用户搜索“物流自动化”,AI推荐某家物流公司的文章,并标注“推荐内容” 你可以采用按点击收费(CPC)或按展示收费(CPM)的模式 (2)会员订阅模式 对于高价值商业内容(如市场分析报告),可以设置付费阅读 例如:“完整报告需订阅VIP会员” (3)B2B企业推广 允许企业付费提交文章,你的AI系统根据用户搜索行为自动推荐给目标用户 下一步建议 ✅ 第一步(短期): 设计数据库并开始采集商业文章 训练关键词匹配模型,提高推荐精度 ✅ 第二步(中期): AI优化文章摘要、分类和匹配规则 建立商业文章+AI问答的智能推荐系统 ✅ 第三步(长期): 逐步拓展B2B合作,允许企业付费推广商业文章 结合用户数据,优化个性化推荐算法
2 个月前
我们在开发网站的时候,往往有想克隆别人网站的想法。那么在技术上怎么才能实现呢? ⚠️ 重要提示 确认目标网站的版权和合法性:如果你没有目标网站的授权,直接克隆并使用可能会侵犯版权或违反法律。 如果只是想模仿其功能或界面,建议自行开发类似的网站,而不是直接复制。 如果你拥有授权,可以使用以下方法进行克隆。 🔹 方法 1:使用 HTTrack 下载整个网站 HTTrack 是一个网站克隆工具,可用于离线浏览: 下载安装 HTTrack(Windows/macOS/Linux 都支持)。 创建新项目 并输入目标网站 URL地址。 启动克隆,HTTrack 会下载 HTML、CSS、JS、图片等资源。 本地查看和编辑,然后上传到自己的服务器。 缺点: 只能克隆静态页面(HTML、CSS、JS),无法克隆后端功能(如 API、数据库、登录系统等)。 如果目标网站有反爬虫策略,可能无法完整下载。 🔹 方法 2:手动分析 & 重新开发 如果你想复制网站的功能,而不仅仅是外观,建议进行以下操作: 1. 分析网站前端 使用 Chrome 开发者工具(F12) 查看 HTML 结构、CSS 样式和 JavaScript 逻辑。 使用 Postman 或浏览器 Network 面板 分析 API 接口调用方式(如果适用)。 复制或编写类似的 HTML/CSS/JS 代码,实现前端界面。 2. 分析网站后端 如果网站有 API 接口、数据库等后端功能,需要: 观察 API 调用(GET/POST 请求)以了解数据交互方式。 搭建类似的后端(Node.js、Python、PHP、Go 等),并使用数据库(MySQL、MongoDB 等)。 如果网站使用的是 OpenAI API,你可以在 [OpenAI 官方网站] 申请 API Key,然后在你的项目中集成 ChatGPT 或 DALL·E 相关功能。 3. 部署你的网站 本地开发:使用 HTML + CSS + JavaScript + 后端框架(如 Flask、Express、Django)。 云端部署:选择服务器(AWS、阿里云、Vultr、腾讯云等)并部署网站。 🔹 方法 3:使用 Web Scraping(仅用于数据获取) 如果你只想获取网页上的文本数据,可以使用 Python + BeautifulSoup / Selenium 进行爬取: import requests from bs4 import BeautifulSoup url = "http://openai.cha-tai.cn/" response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') # 提取页面文本 text = soup.get_text() print(text) 注意: 如果网站有反爬虫机制,可能需要使用 Selenium 或 Scrapy 进行爬取。 只能获取静态数据,无法克隆网站的功能。 🔹 结论 如果你只是想获取网站的内容,HTTrack 或 Web Scraping 可能够用。 但如果你想克隆网站的功能,建议分析前端和后端结构,并自行开发。
3 个月前
通过结合 VS Code 和 Cline,用户可以轻松实现无代码开发网站。
8 个月前
阿里云宣布完成其域名产品服务的AI化改造,推出首个基于通义大模型的域名AI应用,并上线了包括“.ai”在内的40多个全新热门域名后缀。
8 个月前
将多种AI产品的API聚合到一个平台上,可以大大提高工作效率和灵活性。即使不会编写代码也可以使用低代码/无代码平台来构建这个AI办公桌。
8 个月前
一款适用于任何网站的自动数据提取工具
8 个月前
有几款网站数据分析AI工具值得推荐: Webutler.AI Webutler.AI是一款适用于任何网站的自动数据提取工具。它基于人工智能来分析出网页最合适的数据,并允许将其下载并保存到Excel。该工具不需要特定于网站的脚本,而是通过对HTML结构来检测出关联数据并选择最合适的列表。常用场景包括收集产品价格和评论、分析社交媒体网站等。 MonkeyLearn MonkeyLearn是另一个无编码平台,它使用人工智能数据分析功能来帮助用户可视化和重新排列数据。它提供了一系列预训练的机器学习模型,可用于情感分析、主题分类、命名实体识别等。 MAXQDA MAXQDA是一款定性数据分析软件,提供了广泛的分析方法工具,如扎根理论、定性内容分析、话语分析、混合方法等。它使定性数据分析比以往更快、更容易,并提供了直观易学的界面。 总的来说,这些AI工具可以帮助网站所有者自动执行内容分析和数据采集任务,节省大量时间和精力。通过使用先进的算法和机器学习模型,它们能够快速准确地提取和分析网站内容,为网站优化和内容策略提供有价值的洞见。 推荐官:Perplexity.ai
9 个月前
使用Wix, illa Cloud和Mixo等AI工具创建无代码网站。
9 个月前
一些AI工具可以让不具备专业编程知识的用户相对轻松地构建 AI 网站,但在使用时可能仍需要一定的学习和适应过程,具体的功能和易用性也可能因个人需求和技术背景而有所不同。
9 个月前
如果你想开发一个能够调用大模型的聊天网站,CSDN作为国内知名的开发者社区,你可以在这里找到许多相关的资源和建议。以下是一些步骤和建议: 技术选型:首先,你需要选择适合的后端语言和技术栈,如Python(搭配Flask或Django)、Node.js (Express) 或者Java (Spring Boot)。这些框架都有能力支持API开发和集成第三方服务。 大模型集成:了解如何使用开源库或者云服务提供的API,比如阿里云、腾讯云等提供的预训练模型服务。熟悉其SDK和文档是关键。 前端设计:选择一种前端框架,如React、Vue或Angular,用于构建用户友好的界面,并实现与后端的交互。 安全性:考虑到大模型可能会涉及隐私数据,确保遵守数据安全规范,例如HTTPS通信和适当的用户认证。 性能优化:由于大模型计算量可能较大,需要考虑如何合理地缓存和分发请求,减少对模型的直接压力。 社区交流:CSDN上有大量的开发工程师和技术论坛,你可以提问关于技术难题、性能优化或用户体验的问题,寻求专业的意见和帮助。 资讯来源:CSDN / C知道