EleutherAI是一个致力于开源人工智能研究的非营利性组织。以下是关于它的介绍:

3 个月前
构建像IPAI这样的生态系统对于汇集资源和推动人工智能发展至关重要。

3 个月前
2025年10月29日,苹果公司发布了名为Pico-Banana-400K的大规模研究数据集,旨在推动文本引导图像编辑技术的发展。 数据集概况:Pico-Banana-400K包含40万张图像,其研究论文题为《Pico-Banana-400K:面向文本引导图像编辑的大规模数据集》。该数据集采用非商业性研究许可发布,学术机构和研究人员可免费使用。 构建过程:研究团队首先从OpenImages数据集中选取大量真实照片,以确保图像内容的多样性,涵盖人物、物体及含文字场景等。然后设计了35种不同类型的图像修改指令,将其归入像素与光度调整、以人为中心的编辑、场景构成与多主体编辑等八大类别。接着,把原始图像与编辑指令输入至Nanon-Banana模型进行图像编辑,生成结果由Gemini 2.5-Pro模型进行自动评估,只有通过双重验证的结果才会被纳入最终数据集。 数据集构成: 单轮监督微调整子集:包含25.8万个成功的单轮图像编辑示例,涵盖了35种编辑分类法的全部范围,为模型训练提供强大的监督信号。 多轮编辑集:包含7.2万个按顺序进行的编辑交互示例,序列长度从2到5轮不等,用于研究连续修改中的顺序编辑、推理与规划。 偏好集:包含5.6万个示例,由原始图像、指令、成功编辑和失败编辑组成的三联体,可用于训练奖励模型和应用直接偏好优化等对齐技术。 长短指令配对集:用于发展指令重写与摘要能力。 发布意义:尽管Nanon-Banana在精细空间控制、布局外推和文字排版处理方面仍存在局限,但Pico-Banana-400K为下一代文本引导图像编辑模型提供了一个坚实、可复现的训练与评测基础。目前,相关研究论文已发布于预印本平台arXiv,完整的Pico-Banana-400K数据集也已在GitHub上向全球研究者免费开放。 (新闻来源:github.com/apple/pico-banana-400k )

3 个月前
KI-Marktplatz.com:德国AI平台公司业务介绍 AI-Marktplace(也称为KI-Marktplatz)是一家德国AI平台公司,总部位于德国(与帕德博恩大学和弗劳恩霍夫研究所等机构紧密合作),专注于为工程领域的产品开发者和团队提供定制化的AI解决方案。该平台于2020年代初推出(由联邦经济和能源部BMWk资助的“AI作为生态系统驱动者”竞赛项目),旨在通过生成式AI(GenAI)加速工业创新,帮助企业从产品构想到市场推出的全过程实现效率提升、开发时间缩短和成本降低。公司将前沿研究与实用工程经验相结合,强调无缝集成AI到现有IT系统中,避免业务中断。 业务模式 AI-Marktplatz.com 采用数字市场平台模式,连接AI解决方案提供商、专家和用户。核心是通过咨询、实施和合作伙伴生态变现: 收入来源:定制咨询服务、PoC(概念验证)开发、部署支持,以及市场交易(如AI模型和技术授权)。 价值主张:端到端支持,从用例识别到规模化部署,通常在4周内从idea到PoC,帮助企业自动化例行任务、标准化设计并提升创新潜力。 主要服务 平台的服务分为三个阶段,覆盖工程全生命周期: 用例识别(Use Case Identification):系统分析过程痛点,提供AI专家访问和个性化推荐,帮助企业识别KI应用机会(如需求工程中提升50%生产力)。 用例实施(Use Case Implementation):快速开发和测试PoC,验证AI益处并降低风险,聚焦于机械、电子、软件和系统建模。 用例 rollout(Use Case Rollout):无缝扩展和集成AI解决方案到现有系统中,支持产品生命周期管理(PLM),如变体管理和追溯性搜索。 其他扩展服务包括: AI在需求工程中的应用(生成规格文档)。 聊天助手辅助系统工程。 生成式AI在机械设计(标准化零件)、电子(SPS代码生成)和软件开发中的集成。 目标受众 主要针对工业工程团队和产品开发者,包括制造业、汽车、机械和电子行业企业(如Claas、Hella Gutmann、Diebold Nixdorf)。适合希望通过AI自动化设计、减少制造成本并加速市场引入的中型企业。 关键平台功能 AI市场:汇集AI模型、技术、基础设施和用例库,支持云端(如领先云提供商)或本地部署。 技术栈:基于客户需求选择基础模型、GenAI框架(如最新生成技术),并集成IDS(International Data Spaces)参考架构,确保数据安全和主权。 创新支持:访问研究网络,保持趋势前沿;覆盖领域包括系统建模、学科特定开发和PLM优化。 独特卖点:工业级AI集成(非通用工具),强调安全、效率和可扩展性;通过网络连接研究(如帕德博恩大学HNI)和行业实践。 合作伙伴与独特优势 合作伙伴:与研究机构(如帕德博恩大学HNI、弗劳恩霍夫IEM、ITS-OWL)和行业协会(如prostep ivip、KI Bundesverband、International Data Spaces Association)紧密合作。实际案例包括Westaflex、Übermetrics Technologies等企业的AI集成。 背书:获得acatech成员Prof. Dr.-Ing. Jürgen Gausemeier、KI Bundesverband的Vanessa Cann等专家认可,突出平台的可靠性和创新性。 独特优势:结合学术研究与企业实践,提供“即插即用”AI解决方案;强调数据主权(通过IDS),适合对隐私敏感的德国工业。 整体使命 KI-Marktplatz.com 的使命是为产品开发者提供工业适用的AI工具,解锁生成式AI在工程中的潜力。通过加速开发、提升产能和降低风险,帮助企业更快地将创新推向市场,最终推动德国工业的数字化转型。

11 个月前
Scaling Law 在人工智能领域的解释 Scaling Law(缩放定律)是人工智能(AI)领域中的一个核心概念,用于描述模型性能如何随着模型规模(如参数数量)、数据集大小和计算资源的增加而变化。这一规律通常遵循幂律关系,即模型性能随规模的增长呈指数或幂次提升,但提升速度会逐渐放缓并趋于上限。 核心概念 模型规模:包括模型的参数数量、层数等。例如,GPT系列模型通过不断增加参数数量实现了性能的显著提升。 数据集大小:训练数据的规模对模型性能有直接影响。更大的数据集通常能带来更好的泛化能力。 计算资源:包括训练所需的计算量(如GPU/TPU资源)和时间。计算资源的增加可以加速训练过程并提升模型性能。 幂律关系 Scaling Law 的核心是幂律关系,即模型性能 ( Y ) 与模型规模 ( X ) 的关系可以表示为 ( Y = kX^n ),其中 ( k ) 为常数,( n ) 为幂指数。例如,腾讯的 Hunyuan-Large 模型的 Scaling Law 公式为 ( C \approx 9.59ND + 2.3 \times 10^8D ),揭示了模型性能与参数数量和数据量的关系。 实践意义 资源优化:通过 Scaling Law,研究人员可以预测增加模型规模或计算资源是否能够带来显著的性能提升,从而优化资源配置。 模型设计:Scaling Law 为大规模模型的设计提供了理论支持,例如 OpenAI 的 GPT 系列和百度的 MoE 模型。 性能预测:帮助研究人员在资源有限的情况下,平衡模型规模、数据量和计算资源,以达到最佳性能。 应用实例 GPT 系列:OpenAI 通过系统性地增加模型规模,展示了 Scaling Law 在实践中的有效性。 Hunyuan-Large:腾讯的开源 MoE 模型,其 Scaling Law 公式为模型开发提供了重要指导。 迁移学习:斯坦福大学和谷歌的研究表明,预训练数据集大小与下游任务性能之间的关系也遵循 Scaling Law。 挑战与未来方向 数据资源枯竭:随着互联网数据的接近枯竭,Scaling Law 面临数据不足的挑战。 算法创新:当前 Transformer 架构的局限性促使研究人员探索更高效的算法,如 DeepSeek-R1-Zero 通过强化学习实现了突破。 新范式探索:Scaling Law 正在向后训练和推理阶段转移,研究重点从单纯追求规模转向优化数据质量和挖掘模型潜力。 结论 Scaling Law 是 AI 领域的重要理论工具,为大规模模型的设计和优化提供了科学依据。尽管面临数据资源和算法创新的挑战,但其在推动 AI 技术进步中的作用不可替代。未来,随着研究的深入,Scaling Law 的应用将更加精细化和多样化。
Minimax(海螺AI)已由大模型名Minimax替换原海螺AI。现海螺AI为Minimax视频生成产品名。
海螺AI