
LangManus是一个社区驱动的AI自动化框架,其核心设计理念是分层多智能体系统。以下是对它的详细介绍:
核心功能:
技术原理:
通过分层多智能体系统架构,结合语言模型、神经搜索和网络搜索技术,实现复杂任务的高效执行。集成多种语言模型,并利用提示词管理工具优化模型输入,以实现多样化的任务执行。任务管理系统采用工作流程图可视化,实时监控任务状态并支持流式响应。数据处理和检索方面,利用Jina和Tavily API,支持向量化数据存储和检索,能处理多种类型的外部数据。
优势特点:
支持多种开源语言模型,如通义千问,同时兼容OpenAI API接口,能根据任务复杂度灵活调用不同层级的模型。提供基于FastAPI的API服务器,支持流式响应,便于集成到其他系统中,还提供默认的Web界面,为用户提供友好的交互体验。
应用范围:
包括人力资源领域的简历筛选和候选人评估、房地产领域的个性化购房建议生成、旅游规划领域的行程规划和预订、内容创作领域的图文混排设计、教育领域的课件和试题生成等。

2 天前
作者: Augusto Marietti(Kong CEO & 联合创始人)、YJ Lu(Teachers’ Venture Growth 总监)、Yiran Wu(Teachers’ Venture Growth 投资分析师) 背景:上下文是新的算力 过去几年,AI 以史无前例的速度发展。从传统机器学习系统跃迁到能写作、编程、推理的生成式 AI 模型,这一变化彻底改变了我们与 AI 的互动方式。但旅程并未结束。 我们正进入一个新的阶段:具备上下文理解与自主行动能力的 Agentic AI(代理式 AI)。它们能自主设定目标、执行任务,并且几乎不需要人工干预。 支撑这一转变的核心是 Model Context Protocol(MCP)模型上下文协议 —— 一个新兴标准,用于将基于提示的生成式 AI 模型连接到真实世界的数据、工具与操作。 上一阶段的问题:缺失的上下文(404) 直到最近,大多数前沿大模型都运行在“围墙花园”中: 它们能理解用户提示并生成文本,但无法标准化地访问个人或企业数据、内部工具、API 或其他关键上下文来源。 企业若想让模型具备上下文能力,只能构建昂贵、脆弱且难以维护的定制集成(“胶水代码”)。 2024 年 11 月,Anthropic 推出开源框架 MCP,旨在通过通用协议将上下文引入 LLM,使其能发现、调用并认证外部系统的 API。 MCP 很快成为行业标准,被 OpenAI、Google 等巨头采用。 随着生态成熟,AI 系统将能在不同工具之间保持上下文,实现可持续的架构。 MCP 如何工作? 在 MCP 之前,每个 LLM 都有自己的插件格式,需要为每个工具写独立的集成代码,形成 N × M 的复杂矩阵。 MCP 将这一矩阵折叠为一个供应商中立的系统,通过定义清晰的角色(host、client、server),让工具能以一致方式被发现与调用。 只需为每个上下文源构建一个 MCP server,任何兼容 MCP 的 AI 助手都能像使用工具箱一样使用它。 流程如下: 用户输入提示 模型解析意图 模型不再“猜测”,而是向 真实上下文 请求信息 MCP client 将意图转为标准化请求 MCP server 执行 API 调用并返回结构化结果 模型基于真实数据生成上下文感知的输出 最重要的是:不再需要 N × M 的胶水代码。 承API之踵,拓更阔之路 科技行业并非第一次需要通用标准来实现规模化。 API 曾是软件互联的关键: 它定义了软件之间如何交流、返回什么、如何安全交换信息。 API 真正爆发是在 REST、JSON、OAuth 等标准化之后,开发者终于能以可移植、可预测的方式构建软件。 这催生了 Stripe、Twilio、Plaid 等“API 即业务”的公司。 MCP 正在走类似的道路: 标准化模型访问工具与数据的方式。 随着 MCP 采用率提升,我们将看到 API 生态曾经出现的配套设施: 注册表、可观测性、审批系统、策略引擎、更好的工具链等。 我们的判断:上下文 + API + 工作流 = Agentic AI 我们押注两个方向: Anthropic 的 MCP 正成为连接 LLM 与工具/数据的行业标准,为代理式工作流与多代理系统(A2A)奠定基础。 Kong 将其在 API 管理领域的领先地位扩展到 AI 连接层,成为企业系统与新一代 AI 代理之间的“连接组织”。 Anthropic Anthropic 推出 MCP,是因为 AI 的未来不仅在于更大的模型,还在于将模型连接到正确的上下文。 2025 年 5 月,Anthropic 发布 Integrations,将 MCP 支持扩展到 Claude API,使 Claude 能无代码连接任何远程 MCP server。 未来路线图从单一代理转向多代理协作(A2A): 一个代理获取客户数据 一个代理做投资组合分析 一个代理生成合规报告 全部通过 MCP 与 A2A 无缝协调 AI 将从单一助手变成专业代理网络。 Kong Kong 正将其 API 管理平台扩展到 AI 连接层,推出: AI Gateway:将 LLM/MCP/API 调用视为 API 流量进行路由、安全、监控与优化 MCP Server for Konnect:将企业系统(API、服务、分析等)通过 MCP 暴露给 AI 代理,使其能用自然语言查询并获取洞察 Kong 的愿景是: “没有 API,就没有 AI。” MCP 的下一章:Linux 基金会托管 2025 年 12 月,Anthropic 将 MCP 捐赠给 Linux 基金会旗下的新机构 Agentic AI Foundation(AAIF)。 AAIF 由 Anthropic、Block、OpenAI 共同创立,并获得 Google、Microsoft、AWS、Cloudflare、Bloomberg 支持。 MCP 的开源治理模式类似 Linux、Kubernetes、Node.js、PyTorch 等项目,预计将加速其采用。 目前 MCP 已实现: 每月 9700 万+ SDK 下载 1 万+ 活跃服务器 深度集成到 Claude、ChatGPT、Gemini 等产品 MCP 正从开发者框架走向下一代 AI 工作流的关键基础设施。 未来的机会 MCP 通过提供一个中立、通用的语言,让模型能访问工具、数据与系统,从而降低摩擦、提升互操作性。 随着采用率提升,我们将看到类似 API 生态的爆发: 新商业模式 新工具链 新应用类别 但机会伴随风险: 工具滥用 数据暴露 安全治理需求 生态必须在开放与安全之间取得平衡。 标准本身不会改变世界,生态系统才会。 如果成功,MCP 将成为未来几十年 AI 智能如何被封装、共享与扩展的基础设施。 (文章来源otpp.com )

2 天前
Agent是具备自主决策、工具调用与状态感知的智能体概念,LangGraph则是LangChain生态下的图驱动有状态Agent编排框架,专门解决复杂Agent的状态管理、循环分支与持久执行问题,是构建生产级Agent的核心基础设施。二者是“概念-实现”的强绑定关系,LangGraph为Agent提供图建模、状态持久化、人机协作等关键能力,适配ReAct、多智能体协作等复杂场景。 核心关联逻辑:概念与实现的分层 层级 定位 核心内容 概念层(Agent) 自主决策执行单元 LLM+Tools+自主循环(Thought→Action→Observation),解决非预定义复杂任务 实现层(LangGraph) 图驱动Agent框架 以有向图建模Agent流程,通过State/Nodes/Edges/Checkpointing支撑复杂逻辑 生态层 LangChain全家桶 LangGraph无缝集成LangChain的LLM/Tools/Prompt与LangSmith调试能力,降低开发门槛 LangGraph为Agent解决的核心痛点 有状态执行:用State统一管理对话历史、工具输出、中间结果,支持跨轮次上下文与长期记忆,避免“失忆”。 复杂流程编排:将Agent步骤拆为Nodes(LLM调用、工具执行、决策判断),用Edges(含条件分支)定义路径,原生支持循环(如ReAct迭代)与并行执行。 持久化与容错:Checkpointing自动保存每步状态,任务中断后可恢复,适配长时间运行场景(如多轮调研、项目管理)。 人机协作可控:支持执行中人工干预状态、审批工具调用,解决Agent“黑盒操作”风险。 多Agent协同:将不同功能Agent作为节点,通过图结构实现任务拆分与结果聚合,适配复杂团队协作流程。 典型实现范式:ReAct Agent的图建模 定义State:封装消息、工具结果、思考记录等,用TypedDict/Pydantic统一管理。 配置Nodes:LLM节点(推理决策)、工具节点(执行调用)、路由节点(判断是否继续)。 连接Edges:按条件分支(如“有工具调用则执行工具,否则结束”)构建循环路径。 启用Checkpointing:保存每步状态,支持断点恢复与调试追踪。 部署与监控:用LangSmith可视化执行路径,快速定位逻辑问题。 与传统Agent实现的差异 对比项 LangGraph驱动Agent LangChain基础Pipe 普通云端Agent 状态管理 原生持久化,跨轮次记忆 无内置状态,需手动维护 依赖会话缓存,易丢失 复杂逻辑 支持循环、条件分支、并行 线性流程,扩展有限 多为单步/固定链,灵活度低 容错能力 Checkpointing断点恢复 无容错,中断需重跑 云端依赖,故障难恢复 可控性 执行中人工干预 固定流程,干预困难 操作透明性差 关键使用场景 单Agent复杂任务:市场调研(搜索→数据清洗→报告生成)、财务对账(多系统数据拉取→交叉校验→异常告警)。 多Agent协作:产品开发(需求Agent→设计Agent→开发Agent→测试Agent)、跨境电商(选品→翻译→投放→售后)。 长期运行任务:客户成功跟进(多轮问题诊断→方案生成→效果复盘)、内容系列创作(选题→素材→撰写→发布)。 快速上手建议 用create_react_agent快速搭建基础Agent,绑定LLM与Tools,验证核心流程。 自定义State结构,覆盖任务类型、工具结果、历史对话等关键字段。 拆分Nodes与Edges,添加条件判断(如“金额>1000需审批”),提升流程可控性。 启用Checkpointing并接入LangSmith,监控执行路径与状态变化。

4 天前
命令优先,而非图形界面。

7 天前
原名 Clawdbot 的灵感来自 Claude 模型加载时出现的那个“Clawd”小龙虾/爪子吉祥物。

7 天前
奥地利最知名的独立开发者 Steinberger 是全球最热的“一人公司”/“vibe-coding”代表人物之一。

10 个月前
根据《Nature》最新发表的研究,非营利研究机构METR发现了一项被称为“智能体摩尔定律”的规律,即AI智能体(Agent)在完成长期任务方面的能力每7个月翻一番。这一发现揭示了AI在任务完成时间跨度上的指数级增长趋势,并提出了“50%-任务完成时间跨度”这一新指标来衡量AI的能力变化。 核心发现 能力翻倍周期:自2019年以来,AI智能体完成任务的时间跨度每7个月翻一番。这意味着,如果2019年AI完成某项任务所需时间对应人类需要10分钟,那么7个月后,这一时间将缩短至20分钟。 加速趋势:2024年,AI能力的增长速度进一步加快,部分最新模型的能力每3个月翻一番。 未来预测:按照这一趋势,预计5年后(即2030年左右),AI将能够完成许多当前需要人类花费一个月时间才能完成的任务。 研究方法 METR团队通过以下步骤验证了这一规律: 任务设计:设计了170个多样化任务,涵盖软件工程、机器学习、网络安全等领域,并测量人类专家完成这些任务所需的时间,建立“人类基准线”。 指标引入:提出了“50%-任务完成时间跨度”指标,即AI在50%成功率下完成任务的时间长度。这一指标对数据分布的微小变化具有鲁棒性。 模型评估:评估了2019年至2025年间发布的13个前沿AI模型(如GPT系列、Sonnet 3.7等),通过逻辑回归分析计算每个模型的时间跨度。 验证与外部实验 为了验证结果的可靠性,研究团队进行了多项外部实验,包括: 回溯预测:使用2023-2025年数据验证趋势一致性。 任务混乱度分析:评估任务复杂性对AI性能的影响,发现AI在复杂任务上的提升速度与简单任务相似。 基准测试:在SWE-bench等数据集上验证了类似的指数增长趋势。 意义与影响 技术进步:这一发现标志着AI在执行长期任务能力上的显著进步,可能推动AI在软件开发、研究等领域的广泛应用。 劳动力市场影响:AI能力的快速提升可能对劳动力市场产生深远影响,未来或替代部分人类工作,尤其是重复性和耗时任务。 社会挑战:研究提醒社会各界需关注AI技术进步带来的就业和经济挑战,并提前制定应对策略。 未来展望 METR团队预测,按照当前趋势,AI可能在2028年11月达到一个月的任务时间跨度,保守估计则在2031年2月实现。尽管研究存在任务局限性和未来不确定性,但团队确信AI能力每年有1~4倍的增长趋势。 这项研究为AI技术的发展提供了新的量化标准,同时也引发了对AI未来应用和影响的深入思考。

10 个月前
阿里推出新夸克,集成AI对话、深度搜索、深度执行等功能,标志着其从搜索引擎向AI Agent的转型。 新夸克接入通义系列模型,用户规模超2亿,DAU达3430万,位居AI应用榜首。

10 个月前
2025 年 3 月 12 日消息,OpenAI 发布 Agent 工具包,推出一组新的 API 和工具以简化 Agent 应用程序开发,包括新的 Responses API、网络搜索、文件搜索、计算机使用工具和 Agents SDK 等,还计划在接下来的几周和几个月内发布其他工具和功能。
Minimax(海螺AI)已由大模型名Minimax替换原海螺AI。现海螺AI为Minimax视频生成产品名。
海螺AI