
Orq.ai是一个位于荷兰阿姆斯特丹的生成式AI协作平台,旨在借助大型语言模型的力量,将生成式AI应用企业软件开发试验阶段推向成形阶段:

18 小时前
命令优先,而非图形界面。

3 天前
原名 Clawdbot 的灵感来自 Claude 模型加载时出现的那个“Clawd”小龙虾/爪子吉祥物。

3 天前
奥地利最知名的独立开发者 Steinberger 是全球最热的“一人公司”/“vibe-coding”代表人物之一。

3 个月前
KI-Marktplatz.com:德国AI平台公司业务介绍 AI-Marktplace(也称为KI-Marktplatz)是一家德国AI平台公司,总部位于德国(与帕德博恩大学和弗劳恩霍夫研究所等机构紧密合作),专注于为工程领域的产品开发者和团队提供定制化的AI解决方案。该平台于2020年代初推出(由联邦经济和能源部BMWk资助的“AI作为生态系统驱动者”竞赛项目),旨在通过生成式AI(GenAI)加速工业创新,帮助企业从产品构想到市场推出的全过程实现效率提升、开发时间缩短和成本降低。公司将前沿研究与实用工程经验相结合,强调无缝集成AI到现有IT系统中,避免业务中断。 业务模式 AI-Marktplatz.com 采用数字市场平台模式,连接AI解决方案提供商、专家和用户。核心是通过咨询、实施和合作伙伴生态变现: 收入来源:定制咨询服务、PoC(概念验证)开发、部署支持,以及市场交易(如AI模型和技术授权)。 价值主张:端到端支持,从用例识别到规模化部署,通常在4周内从idea到PoC,帮助企业自动化例行任务、标准化设计并提升创新潜力。 主要服务 平台的服务分为三个阶段,覆盖工程全生命周期: 用例识别(Use Case Identification):系统分析过程痛点,提供AI专家访问和个性化推荐,帮助企业识别KI应用机会(如需求工程中提升50%生产力)。 用例实施(Use Case Implementation):快速开发和测试PoC,验证AI益处并降低风险,聚焦于机械、电子、软件和系统建模。 用例 rollout(Use Case Rollout):无缝扩展和集成AI解决方案到现有系统中,支持产品生命周期管理(PLM),如变体管理和追溯性搜索。 其他扩展服务包括: AI在需求工程中的应用(生成规格文档)。 聊天助手辅助系统工程。 生成式AI在机械设计(标准化零件)、电子(SPS代码生成)和软件开发中的集成。 目标受众 主要针对工业工程团队和产品开发者,包括制造业、汽车、机械和电子行业企业(如Claas、Hella Gutmann、Diebold Nixdorf)。适合希望通过AI自动化设计、减少制造成本并加速市场引入的中型企业。 关键平台功能 AI市场:汇集AI模型、技术、基础设施和用例库,支持云端(如领先云提供商)或本地部署。 技术栈:基于客户需求选择基础模型、GenAI框架(如最新生成技术),并集成IDS(International Data Spaces)参考架构,确保数据安全和主权。 创新支持:访问研究网络,保持趋势前沿;覆盖领域包括系统建模、学科特定开发和PLM优化。 独特卖点:工业级AI集成(非通用工具),强调安全、效率和可扩展性;通过网络连接研究(如帕德博恩大学HNI)和行业实践。 合作伙伴与独特优势 合作伙伴:与研究机构(如帕德博恩大学HNI、弗劳恩霍夫IEM、ITS-OWL)和行业协会(如prostep ivip、KI Bundesverband、International Data Spaces Association)紧密合作。实际案例包括Westaflex、Übermetrics Technologies等企业的AI集成。 背书:获得acatech成员Prof. Dr.-Ing. Jürgen Gausemeier、KI Bundesverband的Vanessa Cann等专家认可,突出平台的可靠性和创新性。 独特优势:结合学术研究与企业实践,提供“即插即用”AI解决方案;强调数据主权(通过IDS),适合对隐私敏感的德国工业。 整体使命 KI-Marktplatz.com 的使命是为产品开发者提供工业适用的AI工具,解锁生成式AI在工程中的潜力。通过加速开发、提升产能和降低风险,帮助企业更快地将创新推向市场,最终推动德国工业的数字化转型。

3 个月前
2025年10月14日,沃尔玛宣布与OpenAI达成一项新的合作伙伴关系: 合作内容:消费者将能够通过AI聊天机器人ChatGPT直接购买沃尔玛的商品,包括杂货(不含生鲜食品)、家庭日用品等,并实现即时结账。山姆会员店会员还可在与AI对话过程中规划膳食、补充日常必需品,并发现新的商品。顾客需先将沃尔玛账户与ChatGPT应用进行绑定,之后在购物时点击ChatGPT应用内的“购买”按钮即可完成下单。该功能计划在今年秋季晚些时候正式上线,届时也将支持第三方卖家的商品。 合作意义:此次合作将帮助零售商更深入地了解并预测客户需求,从而让线上购物体验变得更加个性化和主动化,不再仅仅是被动响应用户搜索。 双方合作基础:沃尔玛与OpenAI在其他业务领域已有合作基础,其内部团队已采用OpenAI认证课程及ChatGPT Enterprise企业版工具。 沃尔玛的AI布局:除了与OpenAI的合作,沃尔玛还推出了自研的生成式AI购物助手“Sparky”,旨在帮助顾客发现、比较商品并完成购买。未来,该功能将进一步扩展,支持自动复购、服务预约,并能理解来自文本、图像、音频和视频等多模态输入信息。

8 个月前
SAP联合创始人、亿万富翁Hasso Plattner计划对位于波茨坦的前勃兰登堡州议会大楼进行重大投资,将其改造为波茨坦大学的第四个校区。这一举措意在将波茨坦打造为“欧洲的斯坦福”,进一步巩固其在科技、研究与创新领域的地位。 项目核心内容包括: 对年久失修、甚至在2023年曾发生火灾的前议会建筑进行修复与重建; 在该地建设新的教学和研究设施,为波茨坦大学提供更多空间; 扩展现有的Hasso Plattner研究所(HPI),加强软件工程与数字创新研究; 投资覆盖波茨坦大学的Golm、Griebnitzsee等校区。 人工智能将成为学术发展的重点 普拉特纳在一份声明中阐明了目标,即实现 “国际领先的研究与教学”,重点聚焦于人工智能(AI)。“欧洲需要这样的地方,让来自世界各地的人才能够自由思考、研究和创造 —— 波茨坦将成为这样一个地方。” 资金与影响: 虽然具体金额未公开,但预计是数十亿欧元级别。此投资对于财政压力较大的勃兰登堡州意义重大,尤其是在该州计划新举债约20亿欧元的背景下。 Plattner的地区影响力: 他曾出资重建州议会大楼外立面,创建了Barberini博物馆和Minsk艺术馆。他在波茨坦Griebnitzsee拥有住所,并通过其基金会深度参与当地教育与文化项目。基金会总部设在著名设计师Wolfgang Joop的旧别墅中。 (图片:HPI.de)

10 个月前
欧洲最佳AI替代方案 当前,在全球AI领域,欧洲企业和项目正扮演着越来越重要的角色,尤其是在美国和中国科技巨头主导的背景下。以下是欧洲一些最具潜力的AI替代方案: 1. Mistral AI(法国) 这家法国公司开发的AI聊天机器人 Le Chat 被视为对标OpenAI的ChatGPT的欧洲版。 Mistral AI 受到法国政府支持,并在2025年巴黎“AI行动峰会”上发挥了重要作用。 2. DeepSeek(中欧合作) 尽管DeepSeek最初来自中国,但其开源模型已在全球引起关注,并可能在欧洲AI生态中占据重要地位,尤其是如果中欧加强AI合作的话。 3. 欧盟自主倡议与监管 欧盟通过 严格的监管政策(如《欧盟AI法案》)推动“布鲁塞尔效应”,以设定全球标准并促进欧洲AI创新。 诸如 GAIA-X(欧洲云数据基础设施)等项目可能成为欧洲独立AI解决方案的基础。 4. 研究中心与初创企业 德国、法国和荷兰等国正在推动AI初创公司和研究项目,例如 绿色AI(节能算法)和 医疗AI。 例如,Yokogawa德国公司 开发了面向工业自动化的AI解决方案。 5. 开源社区与学术项目 欧洲大学(如苏黎世联邦理工学院、慕尼黑工业大学)在AI研究领域处于领先地位,并经常提供开源模型。 像 BigScience(欧洲大型语言模型项目)这样的倡议表明,即使没有商业巨头的支持,欧洲仍具备竞争力。 挑战 欧洲在 投资规模 和 数据经济 方面仍落后于美国和中国。 欧盟市场的碎片化(语言、法规差异)使得AI解决方案的规模化变得困难。 结论 欧洲不仅在推动本土AI创新,还通过 监管、数据主权和国际合作 来保持在全球AI竞争中的影响力。虽然目前还没有欧洲企业能挑战OpenAI或谷歌的统治地位,但在细分领域和监管引领方面,欧洲已展现出巨大潜力。

10 个月前
根据《Nature》最新发表的研究,非营利研究机构METR发现了一项被称为“智能体摩尔定律”的规律,即AI智能体(Agent)在完成长期任务方面的能力每7个月翻一番。这一发现揭示了AI在任务完成时间跨度上的指数级增长趋势,并提出了“50%-任务完成时间跨度”这一新指标来衡量AI的能力变化。 核心发现 能力翻倍周期:自2019年以来,AI智能体完成任务的时间跨度每7个月翻一番。这意味着,如果2019年AI完成某项任务所需时间对应人类需要10分钟,那么7个月后,这一时间将缩短至20分钟。 加速趋势:2024年,AI能力的增长速度进一步加快,部分最新模型的能力每3个月翻一番。 未来预测:按照这一趋势,预计5年后(即2030年左右),AI将能够完成许多当前需要人类花费一个月时间才能完成的任务。 研究方法 METR团队通过以下步骤验证了这一规律: 任务设计:设计了170个多样化任务,涵盖软件工程、机器学习、网络安全等领域,并测量人类专家完成这些任务所需的时间,建立“人类基准线”。 指标引入:提出了“50%-任务完成时间跨度”指标,即AI在50%成功率下完成任务的时间长度。这一指标对数据分布的微小变化具有鲁棒性。 模型评估:评估了2019年至2025年间发布的13个前沿AI模型(如GPT系列、Sonnet 3.7等),通过逻辑回归分析计算每个模型的时间跨度。 验证与外部实验 为了验证结果的可靠性,研究团队进行了多项外部实验,包括: 回溯预测:使用2023-2025年数据验证趋势一致性。 任务混乱度分析:评估任务复杂性对AI性能的影响,发现AI在复杂任务上的提升速度与简单任务相似。 基准测试:在SWE-bench等数据集上验证了类似的指数增长趋势。 意义与影响 技术进步:这一发现标志着AI在执行长期任务能力上的显著进步,可能推动AI在软件开发、研究等领域的广泛应用。 劳动力市场影响:AI能力的快速提升可能对劳动力市场产生深远影响,未来或替代部分人类工作,尤其是重复性和耗时任务。 社会挑战:研究提醒社会各界需关注AI技术进步带来的就业和经济挑战,并提前制定应对策略。 未来展望 METR团队预测,按照当前趋势,AI可能在2028年11月达到一个月的任务时间跨度,保守估计则在2031年2月实现。尽管研究存在任务局限性和未来不确定性,但团队确信AI能力每年有1~4倍的增长趋势。 这项研究为AI技术的发展提供了新的量化标准,同时也引发了对AI未来应用和影响的深入思考。
Minimax(海螺AI)已由大模型名Minimax替换原海螺AI。现海螺AI为Minimax视频生成产品名。
海螺AI