NumPy(Numerical Python)是Python中用于科学计算的基础包。它提供了一个强大的N维数组对象,以及用于对这些数组进行操作的工具。NumPy为Python带来了类似于MATLAB的数值计算能力。
NumPy是Python科学计算的核心库,它提供了强大的数组运算功能,是进行数据分析、机器学习等任务的重要工具。如果你想在Python中进行数值计算,那么NumPy是一个必不可少的库。
免责声明:本网站仅提供网址导航服务,对链接内容不负任何责任或担保。1 个月前
数据标签业务(Data Annotation / Data Labeling)是人工智能(AI)产业链中的重要环节,主要为机器学习模型提供高质量的训练数据。随着人工智能技术的广泛应用,中国的数据标注行业迎来了巨大的商业机遇,同时也面临一系列挑战。本文将从市场需求、政策环境、技术发展、产业竞争等多个维度进行分析。 一、数据标签业务的商业机遇 1. AI产业高速发展带动数据需求增长 中国人工智能产业正在快速发展,自动驾驶、智能客服、智能安防、医疗AI等领域对高质量数据标注的需求不断增长。例如: 自动驾驶:需要海量的图像、视频数据进行道路标注,如车道线、行人、交通标志等。 智能医疗:需要专业医学影像数据标注,如CT、MRI图像的病变区域标注。 电商与内容推荐:需要大量的文本、语音、图像数据进行分类、情感分析等标注。 数据质量直接决定了AI模型的性能,因此高质量的数据标注服务成为AI企业的刚需。 2. 中国具备全球领先的“数据优势” 中国的互联网和移动应用市场庞大,数据量丰富,包括社交、购物、金融、交通、医疗等多个领域的数据资源。相比欧美国家对数据隐私的严格监管,中国本土市场的数据可获取性更强,为数据标注业务提供了丰富的原材料。 3. 人力成本相对较低,适合规模化发展 尽管中国的劳动力成本逐年上升,但相比欧美仍然较低,特别是在三、四线城市和农村地区。大量低技术工人可以通过简单培训参与数据标注工作,形成规模化的数据加工产业链。 4. 政策支持及人工智能发展战略 中国政府高度重视人工智能发展,出台多项支持政策,如《新一代人工智能发展规划》,鼓励企业布局AI数据相关业务。此外,地方政府也在推动“AI+产业”落地,为数据标注公司提供政策支持、产业园区资源等。 5. 行业逐步向标准化、自动化升级 随着AI技术的发展,数据标注行业正在向更高效的方向演进: 半自动化标注:利用预训练AI模型辅助人工标注,提高效率。 智能质量控制:采用机器学习算法对标注数据进行自动审核,减少人工错误。 行业标准化:政府与企业推动建立统一的标注标准,提高数据质量。 这些趋势有助于降低成本、提高效率,使数据标注企业更具竞争力。 二、数据标签业务的商业挑战 1. 低端市场竞争激烈,价格战严重 数据标注行业进入门槛较低,导致大量小公司涌入市场,尤其是低端手工标注业务竞争激烈,利润率较低。许多企业通过压低价格争夺订单,导致行业整体盈利能力下降。行业集中度低,超500家中小标注企业竞争,图像标注单价从0.5元/张降至0.2元/张(2020-2023年),毛利率普遍低于15%。 2. 数据隐私与安全监管趋严 随着《数据安全法》《个人信息保护法》等法规的实施,数据使用的合规性要求提高,许多企业在数据收集和处理过程中需要满足严格的合规要求。这对数据标注企业提出更高的合规成本,如: 数据脱敏处理:需要去除敏感信息,增加处理成本。 数据存储合规性:要求数据存储在国内,并满足安全要求。 3. 业务同质化,缺乏技术壁垒 目前市场上的数据标注公司大多依赖人力,缺乏自主技术创新,难以形成核心竞争力。随着AI自动化标注技术的进步,传统的纯人工标注模式可能被取代,低端数据标注公司面临淘汰风险。 4. AI自动化标注技术的冲击 AI本身的发展正在威胁传统人工数据标注市场。例如: 计算机视觉:自动图像识别和标注技术正在进步,减少人工标注需求。 自然语言处理(NLP):自动文本分析工具可以降低文本标注的人工需求。 虽然完全替代人工标注还需时间,但对于低难度标注任务,AI已经可以大幅减少人工参与。 5. 客户集中度高,议价能力低 目前中国数据标注市场的大客户主要是科技巨头(如BAT、华为、字节跳动等),这些企业的议价能力极强,小型标注公司难以获取高利润订单。此外,大型科技公司正在自建数据标注团队,减少对外部供应商的依赖,使数据标注企业的市场空间进一步压缩。 三、未来发展方向与建议 1. 向高价值标注业务转型 企业应避免陷入低端市场的价格战,转向更专业化、高价值的标注领域,如: 医疗AI标注(高精度医学影像、基因数据) 自动驾驶高精度3D点云标注 金融数据标注(信用风险评估、反欺诈分析) 这些领域要求专业知识,竞争相对较小,利润率更高。 2. 发展智能标注平台,提高自动化水平 企业应开发自有标注平台,结合AI自动化工具,提升标注效率。例如: 采用预标注+人工审核模式,提高效率。 发展众包平台,让自由职业者参与标注任务,降低成本。 引入区块链溯源技术,提高数据可信度。 3. 加强数据安全与合规管理 数据合规是未来发展的关键,建议: 采用数据脱敏技术,确保用户隐私安全。 获得ISO 27001信息安全认证,增强市场信任度。 避免使用敏感数据,规避法律风险。 4. 拓展海外市场 相比中国市场竞争激烈,欧美市场的数据标注需求仍然较大,且愿意支付更高的价格。可以通过合作或跨境平台提供数据标注服务,拓展海外业务。 5. 与AI企业深度合作,提供定制化服务 与AI企业建立深度合作,提供更符合客户需求的标注服务,如: 嵌入式标注服务(在AI开发平台上直接提供标注服务) 数据增强+标注(同时提供数据扩增和标注服务) SaaS模式标注平台(提供在线标注工具,企业自行标注) 四、结论 中国的数据标签行业正处于快速发展阶段,市场潜力巨大,但也面临激烈竞争和技术变革带来的挑战。未来,企业应摆脱低端市场竞争,向高价值、智能化、合规化方向发展,才能在行业中占据更有利的位置。同时,通过国际化布局和技术创新,也能进一步拓展市场空间,实现长期增长。 (图片来源:levity.ai)
4 个月前
2024年12月18日,AI数据分析平台Databricks宣布启动J轮融资,目标为100亿美元,目前已完成86亿美元.。 此轮融资由Thrive Capital领投,Andreessen Horowitz、DST Global、GIC、Insight Partners和WCM Investment Management等联合领投,安大略省教师退休基金、ICONIQ Growth、MGX、Sands Capital以及Wellington Management等也参与其中.。融资后Databricks估值达620亿美元,成为全球最具价值的私营公司之一。 Databricks表示,这笔融资的用途主要有以下几个方面:一是为现任和前任员工提供流动性;二是进行战略收购,加速公司成长,如该公司在2023年6月收购MosaicML等,以加强在Data+AI布局;三是拓展海外市场,强化全球竞争力;四是开发更多AI产品,吸引顶尖人才。 另外,Databricks预计在截至2025年1月31日的季度内将首次实现正自由现金流,并达到30亿美元的年化收入。 其首席执行官Ali Ghodsi曾表示,公司IPO最早可能在2025年年中进行。
7 个月前
Covision Lab专注于计算机视觉和机器学习的公司,致力于将最先进的技术应用于工业领域的挑战,包括制造业、电子商务、印刷、农业和移动性等行业。
7 个月前
AI视频生成模型的主要技术原理包括多种深度学习和机器学习技术,尤其是生成对抗网络(GANs)、变分自编码器(VAEs)和自然语言处理(NLP)。
8 个月前
PyCharm 是一个强大的集成开发环境(IDE),专门用于 Python 编程。它提供了丰富的功能,如代码补全、调试、版本控制和项目管理等,旨在提高开发效率和用户体验。然而,PyCharm 本身并不能替代 Python。 关键点: PyCharm 的角色: PyCharm 作为 IDE,提供了编写、调试和运行 Python 代码的环境和工具。 它并不包含 ...
8 个月前
一款适用于任何网站的自动数据提取工具
8 个月前
有几款网站数据分析AI工具值得推荐: Webutler.AI Webutler.AI是一款适用于任何网站的自动数据提取工具。它基于人工智能来分析出网页最合适的数据,并允许将其下载并保存到Excel。该工具不需要特定于网站的脚本,而是通过对HTML结构来检测出关联数据并选择最合适的列表。常用场景包括收集产品价格和评论、分析社交媒体网站等。 MonkeyLearn MonkeyLearn是另一个无编码平台,它使用人工智能数据分析功能来帮助用户可视化和重新排列数据。它提供了一系列预训练的机器学习模型,可用于情感分析、主题分类、命名实体识别等。 MAXQDA MAXQDA是一款定性数据分析软件,提供了广泛的分析方法工具,如扎根理论、定性内容分析、话语分析、混合方法等。它使定性数据分析比以往更快、更容易,并提供了直观易学的界面。 总的来说,这些AI工具可以帮助网站所有者自动执行内容分析和数据采集任务,节省大量时间和精力。通过使用先进的算法和机器学习模型,它们能够快速准确地提取和分析网站内容,为网站优化和内容策略提供有价值的洞见。 推荐官:Perplexity.ai
8 个月前
7月17日“牛津数学公开讲座”系列研讨会邀请陶哲轩演讲主题关于AI在科学和数学领域的潜力。 陶哲轩认为AI是“猜测机器”,本质是在解巨大方程组;AI虽不是魔法但类似飞机发明,从初始发展到真正发挥作用需要很多工作;科学领域可以利用AI这个“大消防水管”(强大输出能力)结合验证过滤掉杂质,如药物设计领域可减少试验候选对象,材料科学领域或可跳过昂贵合成过程缩小候选范围;气候模拟领域也能利用AI大大缩短模拟时间。 陶哲轩将 AI 描述为“猜测机器”,这一观点颇具启发性。 他的这一表述可能意味着,AI 基于大量的数据和算法进行运算和预测,从而给出各种可能的结果和解决方案,就如同在进行各种猜测。但这种“猜测”并非是毫无根据的盲目行为,而是建立在对海量数据的学习和分析基础之上。 例如,在图像识别中,AI 会根据已有的图像特征和模式,猜测输入的新图像属于何种类别;在自然语言处理中,AI 会根据语言的语法、语义和上下文,猜测下一个可能出现的单词或句子。 这一观点也提醒我们,虽然 AI 能够提供有价值的推测和建议,但这些结果并非绝对准确和可靠,仍需要人类的进一步验证和判断。您是对陶哲轩的这一观点感兴趣,还是希望了解更多关于他在 AI 领域的其他见解呢?
9 个月前
加州理工学院 (Caltech) 开发了一种机器人,即使受到严重损伤,也能继续有效地游泳,就像受伤的鱼一样,这是通过使用人工智能 (AI) 和仿生适应技术实现的。
9 个月前
GraphRAG(Graph-based Retrieval-Augmented Generation):基于图谱的检索增强生成, 是一种结合了知识图谱和图机器学习技术的新型检索增强生成模型。