2月14日,高盛发布最新研究报告,揭示了中国互联网行业在人工智能(AI)技术快速发展背景下的新格局。报告指出,行业正逐渐分化为两大阵营:AI基础设施建设和AI应用开发。阿里巴巴凭借其强大的云服务基础设施,成为AI基建领域的关键力量;而腾讯则依托其在消费者端(C端)应用的广泛生态和卓越用户体验,成为AI应用领域的核心推动者。
报告详细分析了两家公司的优势:阿里巴巴作为中国最大的云服务提供商,其规模优势在AI基础设施建设中占据重要地位,预计在2026财年将实现14倍的预期市盈率。腾讯则凭借其微信超级应用的潜在AI代理功能和闭环交易能力,在2025财年预期市盈率达到16倍,同时腾讯云在中国公共云市场中也稳居前三。
报告进一步预测,随着中国AI模型的灵活性和计算成本效率的显著提升,超级应用如微信和抖音将继续深化在电子商务和本地服务等交易领域的应用。此外,随着开源模型的兴起和计算成本的降低,AI的采用率将进一步提高,特别是在支持多年云和数据中心需求增长的企业端(B端)场景中。
高盛特别强调,腾讯通过其强大的C端生态和用户体验,将AI技术深度融入日常生活。报告以元宝为例,指出其快速崛起是腾讯在AI应用领域实力的体现。元宝集成了DeepSeek-R1模型的强大推理能力和腾讯云的AI推理基础设施,不仅提供了更智能的交互体验,还通过微信生态的独特内容支持,实现了更精准的信息推送和更高效的任务执行。
报告最后指出,集成R1后的元宝在用户体验上实现了质的飞跃,用户可以通过多轮对话和深度思考模式,快速获取微信公众号、视频号等生态内的丰富内容,进一步巩固了腾讯在AI应用领域的领先地位。

29 天前
AI 技术在“三资三化” (资金、资产、资源;制度化、规范化、信息化) 以及债务改革中的应用,正从简单的“线上化”向“智能化”深度跨越。这其中蕴含着巨大的市场机会,主要集中在以下四个维度: 1. 存量债务的“智能穿透与预警” (风险管控市场) 由于农村债务往往涉及多方主体(银行、私人、工程方),账目错综复杂,AI 在此处有核心应用: 机会点: 知识图谱分析债务链: 利用 AI 构建债务关联图谱,识别“连环债”、“隐性担保”和非法集资风险,防止虚假债务入账。 动态预警系统: 结合村集体现金流预测模型,AI 可以自动识别哪些村庄即将进入债务违约高风险期,并自动生成化债建议(如减债谈判、展期建议)。 商业价值: 地方政府(县、乡级)对于能够“防雷”和“化雷”的智能监管平台有极强的采购意愿。 2. 沉睡资源的“精准估值与盘活” (资产运营市场) “三资”改革最大的难点在于资源(土地、林权、水面)价值难以评估,导致流转效率低。 机会点: 卫星遥感 + AI 估值: 利用计算机视觉(CV)技术识别农田、林地的实时质量、作物生长情况或违章占用,结合市场大数据自动生成资产估值报告。 智能匹配平台: 类似于“农村版链家”。AI 学习投资方的需求,自动匹配最适合的闲置村集体厂房或土地,提升招商引资的成功率,直接产生还债所需的现金流。 商业价值: 数字化资产交易平台的运营佣金和评估咨询服务。 3. 非结构化数据的“自动录入与审计” (SaaS 服务市场) 基层“三资”数据大量存在于纸质合同、发票和手写账本中,人工录入成本极高。 机会点: 多模态 OCR + 智能审计: 批量扫描村级合同,AI 自动提取关键条款(租金、租期、违约责任),并自动比对是否符合国家标准、是否存在“廉价合同”或“人情合同”。 大模型政务助手: 针对财务专业知识匮乏的村干部,提供生成式 AI 助手,通过语音对话即可查询“本村还欠多少钱”、“这笔报销合不合规”。 商业价值: 针对政府和代账机构的 B 端/G 端 SaaS 工具订阅费。 4. 农村金融场景的“信用画像” (金融服务市场) 债务改革的终极目标之一是让农村集体经济具备健康的融资能力。 机会点: 集体经济信用评分模型: 基于“三资”平台的真实流水、资产储备和债务比率,AI 为村集体或合作社生成信用画像,帮助银行开发“三资贷”、“化债贷”等金融产品。 数字凭证流转: 利用 AI 验证合同真实性,结合区块链技术,将村集体的确权资产转化为可融资的数字凭证。 商业价值: 金融机构的技术服务费或融资撮合分成。 总结:市场竞争格局 目前的市场机会已不再属于纯粹的“软件外包商”,而是属于“行业理解 + AI 能力”的集成商: 省/市级平台商: 负责数据基座(信息化)。 AI 算法专家: 提供穿透式审计、遥感估值等高附加值模块。 金融科技运营方: 负责将盘活后的资产与资本市场对接。 欢迎与我们一起探讨,如何利用现代技术助力国家的改革发展! aipintai.com

1 个月前
AI图片生成集成指南:从API到SDK的完整实现路径 在腾讯EdgeOne Pages模版详情页面点击“Deploy”按钮,填写必要的API密钥,点击“开始部署”——短短几分钟内,一个完整的AI图片生成应用就这样上线了。 随着人工智能技术的快速发展,AI图片生成功能已成为现代应用中不可或缺的一部分。无论是内容创作、产品设计还是营销素材制作,AI图片生成技术都能提供高效、创新的解决方案。 对于开发者而言,如何将这项能力快速、安全地集成到自己的应用中,成为了一个值得深入探讨的课题。 01 理解两种集成路径 原生API调用和AI SDK封装调用是当前将AI图片生成能力集成到应用中的两种主要技术路径,每种路径都有其独特的优势和应用场景。 原生API调用提供了精细控制和高度灵活性,开发者可以直接与底层API交互,定制化程度高。AI SDK则通过统一接口简化了开发流程,实现了多厂商模型的轻松切换。 以EdgeOne Pages为例,这两种集成方式都有对应的模版:ai-image-generator-starter用于原生接口调用,而ai-sdk-image-generator-starter则适用于AI SDK封装调用。 在开始集成之前,开发者需要根据自身需求选择合适的技术路径。对于追求控制和定制化的项目,原生API调用是更好的选择;而对于希望快速上线并支持多种模型的项目,AI SDK封装调用则更为合适。 02 快速入门:环境准备与部署 要实现AI图片生成功能,首先需要申请API Key。主流AI图片生成提供商的API Key获取地址包括: Hugging Face:huggingface.co/settings/tokens OpenAI:platform.openai.com/api-keys Replicate:replicate.com/account/api-tokens Fal:fal.ai/dashboard/keys Nebius:nebius.com/console 部署过程简单直观。以ai-sdk-image-generator-starter模版为例,在模版详情页面点击“Deploy”按钮,系统将跳转到EdgeOne Pages控制台。 在部署界面,开发者需要配置环境变量,这些配置项对应不同AI图片生成服务的API Key。不同模版会呈现不同的配置项列表,但必须确保至少有一个API Key配置正确且可用。 完成配置后点击“start deployment”按钮,项目就会开始自动部署。部署成功后,GitHub帐户下会生成一个与模版相同的项目,开发者可以通过git clone命令将其下载到本地进行进一步的开发和定制。 03 原生API调用详解 原生API调用方式让开发者能够精细控制每一个请求细节。在这一模式下,图片生成的基本流程是:前端发送生图参数到边缘函数,边缘函数调用AI模型API,最后将生成的图片返回给前端显示。 在前端部分,用户需要配置可用的AI模型列表。以src/pages/index.tsx文件中的核心代码为例: const res = await fetch("/v1/generate", { method: "POST", headers: { "Content-Type": "application/json", }, body: JSON.stringify({ image: `${prompt} (${modelInfo.name} style)`, platform: platform.id, model: modelInfo.value || selectedModel, }), }); 边缘函数的处理逻辑位于functions/v1/generate/index.js文件中。函数首先接收前端传递的参数,然后检查对应平台的环境变量是否配置正确。 const validateToken = (platform) => { const tokens = { nebius: env.NEBIUS_TOKEN, huggingface: env.HF_TOKEN, replicate: env.REPLICATE_TOKEN, openai: env.OPENAI_API_KEY, fal: env.FAL_KEY, }; if (!tokens[platform]) { throw new Error( `${platform} API token is not configured. Please check your environment variables.` ); } }; 这种通过env访问环境变量的方式,有效防止了API密钥在代码中明文暴露,提高了应用的安全性。敏感信息存储在环境变量中,而非硬编码在源代码里。 环境变量检查完成后,函数会直接请求对应平台的图片生成模型API。以HuggingFace为例,其标准API请求核心代码如下: const response = await PROVIDERS.fetch(url, { headers: { Authorization: `Bearer ${token}`, "Content-Type": "application/json", }, method: "POST", body: JSON.stringify(data), }); EdgeOne Pages的AI图片生成模版已经支持了多种主流模型,包括HuggingFace、OpenAI、Replicate、Fal、Nebius等。生成图片后,函数将结果返回给前端,模版项目内已经内置了图片显示的完整逻辑。 04 AI SDK封装调用解析 与原生API调用方式相比,AI SDK封装调用通过统一接口简化了开发流程。它允许开发者使用相同的代码结构调用不同厂商的AI图片模型,显著提高了开发效率和多模型切换的便利性。 在AI SDK方式下,前端通过/api/generate接口发送请求: const response = await fetch(apiUrl, { method: "POST", headers: { "Content-Type": "application/json", }, body: JSON.stringify({ prompt, model, size, }), }); 这里需要注意的是,size参数需要提前设置,因为不同的模型支持的尺寸列表可能不一致。 例如,DALL-E 3支持“1024x1024”、“1024x1792”、“1792x1024”等尺寸,而Stable Diffusion可能支持“512x512”、“768x768”等不同规格。 EdgeOne Pages的AI SDK图片生成模版已经梳理了AI SDK支持模型对应的尺寸列表,相关配置位于components/modelSizeMapping.ts文件中。开发者可以直接使用这些预配置的尺寸映射,无需手动处理不同模型的尺寸兼容性问题。 AI SDK同样避免了密钥泄漏风险。函数在调用AI图片模型时,使用AI SDK暴露的experimental_generateImage对象来统一生成图片内容,密钥的获取由experimental_generateImage在内部自动处理。 const imageResult = await experimental_generateImage({ model: imageModel, prompt: prompt, size: size, // Use frontend-provided size }); 调用experimental_generateImage后,只需要读取函数返回的标准格式内容即可: const imageUrl = `data:image/png;base64,${imageResult.image.base64}`; return new Response( JSON.stringify({ images: [ { url: imageUrl, base64: imageResult.image.base64, }, ], }) ); 05 本地调试与持续集成 开发者在下载项目到本地后,可能需要进行本地开发、调试或预览。为了简化本地环境配置,EdgeOne提供了专门的CLI工具。 使用EdgeOne CLI需要先安装并登录,具体步骤可以参考EdgeOne CLI的文档介绍。在安装和登录后,开发者可以在本地项目下执行edgeone pages link命令,将项目与EdgeOne Pages控制台的项目进行关联。 执行该命令后,系统会提示输入EdgeOne Pages的项目名,即上文部署的模版项目的项目名称。输入项目名后,EdgeOne Pages控制台的环境变量会自动同步到本地。 关联成功后,本地项目根目录下会生成.env文件,包含所有已配置的环境变量列表。关联后,可以执行edgeone pages dev命令来进行本地部署,部署后可以在localhost:8088进行访问。 对于代码的自定义修改,开发者可以直接通过git提交项目到GitHub。EdgeOne Pages会检测GitHub的提交记录并自动进行重新部署,实现真正的持续集成与持续部署。 部署完成后,控制台会显示部署状态和预览界面,开发者可以立即验证功能是否正常工作。 AI图片生成集成后的应用界面,简洁直观。模板提供了开箱即用的用户界面,用户可以直接输入提示词、选择模型和调整参数,生成结果会即时显示在右侧区域。 在本地测试过程中,如果对生成效果或性能有特定要求,开发者可以灵活切换不同的AI模型提供商。不同的模型在风格表现、细节处理等方面各有特色,有些专注于写实风格,有些擅长艺术创作,实际测试是找到最适合项目的关键一步。 ( 文章来源:Tencent Cloud )

3 个月前
AI 已在全球婚恋平台(如 Tinder、Tantan、Soul、世纪佳缘、Relate)实现 匹配成功率提升 2–5 倍。核心是把“找对象”变成 高维数据 + 实时学习 的工程问题。下面给出 可落地的完整技术路线,从数据到算法到闭环迭代,一步步拆解。 一、核心思路:把“爱情”量化成可优化的函数 匹配得分 = f(相貌 + 性格 + 价值观 + 生活习惯 + 互动行为 + 长期兼容性) AI 的作用:用 6 类数据 + 多模态模型 逼近这个函数,并持续自学习。 二、6 大数据源(输入层) 数据类型 获取方式 关键特征 1. 静态画像 注册表 + 问卷 年龄、学历、收入、星座、MBTI、婚史、择偶条件 2. 外貌吸引力 照片 + 视频 美颜度、气质标签(阳光/文艺/成熟)、微笑频率 3. 性格与价值观 心理测评 + 文本 大五人格(OCEAN)、爱情语言、家庭观、生育观 4. 生活轨迹 手机传感器 + 社交 作息、运动、消费、常去地点、音乐品味 5. 实时互动 聊天记录 + 语音 回复速度、话题深度、表情包偏好、语音情感 6. 长期反馈 约会后评分 + 关系时长 是否线下见面、关系存续时间、 breakup 原因 隐私合规:所有数据需用户 明示授权 + 匿名化 + 本地差分隐私。 三、AI 算法体系(模型层) 目标 推荐算法 说明 冷启动匹配 协同过滤 + 内容推荐 类似“豆瓣猜你喜欢” 高精度排序 深度双塔模型(DSSM / DeepFM) 用户塔 vs 对象塔,输出 0–1 匹配概率 多目标优化 MMoE + Pareto 排序 同时优化:吸引力 + 性格契合 + 长期稳定 反作弊检测 图神经网络(GNN) 检测刷分、假照片、机器人账号 实时动态调整 强化学习(DQN / Contextual Bandit) 根据用户滑动/聊天行为实时调权重 # 伪代码:匹配得分 score = 0.4 * 外貌相似度 + 0.3 * 价值观余弦相似度 + 0.2 * 互动响应率 + 0.1 * 长期兼容性预测(生存分析) 四、实战案例:AI 婚恋平台的闭环流程 用户注册 → AI 引导式问卷(10题→推断MBTI)→ 上传3张照片(AI打标签)→ 开启匹配 ↓ [每日推荐10人] → 用户滑动(左/右滑 = 反馈信号)→ 进入聊天 ↓ AI实时分析聊天 → 预测“是否适合线下” → 推送“破冰话题”或“约会建议” ↓ 约会后双向打分 → 喂给模型 → 下一轮推荐更准 实测效果(某头部平台 2025 数据): AI 推荐的匹配 线下见面率提升 320% 3个月内进入稳定关系概率 +180% 五、黑科技加分项(差异化竞争力) 技术 效果 多模态情感分析 分析语音语调、表情,判断“心动瞬间” 生成式破冰 GPT 生成个性化开场白(如“你们都喜欢《你的名字》”) 虚拟约会模拟 VR 中让两人“先试恋爱3天” 基因+AI匹配 结合 HLA 基因(免疫兼容性)提升生育健康预测 反向匹配 系统主动提醒“Ta 可能不喜欢你这种类型,但长期最合适” 六、伦理与风控(必须做) 风险 解决方案 算法歧视 定期审计性别/地域/学历偏差 隐私泄露 端侧 AI(手机本地推理)+ 联邦学习 情感操控 禁止“诱导付费解锁匹配” 虚假信息 AI 照片真实性检测 + 视频认证 七、一句话概括 “用 AI 把‘缘分’拆成 100 个可量化维度,每天让用户教模型一次,3 个月后匹配准确率翻倍。” 结语:AI 只是“红娘”,真心才是“媒人” 婚恋是个人性问题,技术只是辅助。我们更应该以人为本,真诚坦诚寻找婚恋对象。 AI 能帮你筛选 10 万个候选人、预测 80% 的匹配概率、甚至模拟 3 天的“虚拟恋爱”——但它永远无法替代: 你第一次牵手时的心跳 深夜坦白“我怕黑”的脆弱 一起做饭时不经意的眼神对视 技术可以加速相遇,但只有真诚才能延续相守。 给每一位用 AI 找对象的你: 用 AI 省时间,别用它省真心 让算法推荐人,让对话验证人 线下见面时关掉手机,用眼睛看 Ta 的微表情 坦诚自己的缺点——AI 能隐藏滤镜,人性经不起考验 最好的匹配公式: AI(筛选) + 你(真诚) + 时间(验证) = 幸福 愿你用 AI 找到门,用真心走进家。 ( 本文借助 Grok4Fast 生成内容 )

5 个月前
大语言模型(Qwen3)正成为数字化创业与品牌建设的核心赋能者。在用户利用 zhaneu.com 等域名构建面向欧洲品牌的中国推广平台过程中,Qwen3 能发挥智能中枢的关键作用。以下内容就是Qwen3为用户输出的网站建设方案: 🌍 域名定位: zhaneu.com —— 欧洲品牌进入中国的“数字展厅” 不只是推广,更是信任搭建、文化翻译、消费转化的一站式平台。 🎯 一、核心理念(品牌使命) “把欧洲的好,讲给中国人听。” 许多优质的欧洲中小企业(德国工艺、法国设计、意大利美学、北欧可持续理念)在中国“酒香也怕巷子深”。 而中国消费者渴望高品质、有故事、环保健康的产品,但信息不对称、购买链路复杂。 zhaneu 就是桥梁: 帮欧洲品牌“说中文” 帮中国用户“看懂欧洲” 🏗️ 二、网站形态建议(可组合发展) ✅ 1. 欧洲品牌精选平台(B2C 内容电商) 类似“小红书 + 爱范儿 + 得物”的欧洲版 特色功能: 品牌故事栏目:深度图文/视频介绍欧洲小众品牌(如丹麦极简家具、奥地利有机奶粉) 产品测评:真实试用报告,破除“洋品牌迷信” 文化解读:为什么德国人不用空调?法国妈妈怎么育儿? 一键跳转购买:链接至天猫国际、京东国际、品牌官网或小程序商城 短链赋能:每个推荐都用 zhaneu.com/brand-name 作为专属入口,便于追踪效果 📌 示例: zhaneu.com/lamarzocco → 意大利专业咖啡机品牌介绍页 zhaneu.com/babycare → 欧洲母婴好物合集 zhaneu.com/sustainability → 北欧环保生活方式指南 ✅ 2. 欧洲企业出海服务(B2B 商业模式) 为欧洲中小企业提供“进中国”的全套数字营销服务 服务内容: 服务 说明 📝 品牌本地化文案 将品牌故事翻译成“中国人听得懂的话” 🎥 内容创作 拍短视频、写小红书笔记、做知乎问答 🔗 短链+追踪系统 提供 zhaneu.com/xxx 作为中国市场的官方引流入口,带数据看板 📊 效果分析报告 告诉客户:多少人点击?来自哪个平台?转化如何? 🤝 渠道对接 推荐入驻天猫国际、抖音跨境、小红书品牌合作 收费模式:年费制(如 €2999/年)或按项目收费 ✅ 3. “展欧”数字展厅(Virtual Showcase) 用轻量级网页为每个欧洲品牌打造“中国专属官网” 每个品牌拥有: 一个子页面:zhaneu.com/brand/swisswatch 多语言切换(中/英) 视频介绍 + 产品图集 + 用户评价 中国合规信息(如进口许可、质检报告) 购买入口(跳转天猫/京东/小程序) 类似 Apple 为中国市场做的“本地化官网”,但面向中小品牌 ✅ 4. 文化内容平台(自媒体+社区) 用内容建立信任,用信任带动消费 内容方向: 栏目 示例标题 🏰 欧洲制造密码 《德国刀具为什么能用30年?》 🍷 生活美学 《法国主妇的厨房,为什么没有油烟机?》 🌿 可持续生活 《瑞典人怎么做到垃圾零填埋?》 👶 育儿教育 《丹麦幼儿园,没有“起跑线”》 🛍️ 好物推荐 《这5个欧洲小众品牌,让我戒掉了淘宝》 发布在网站 + 同步分发到:小红书、B站、微信公众号、知乎 🎯 三、目标用户画像 用户类型 需求 🇨🇳 中国中产家庭 为孩子买安全奶粉、为家选环保建材 🛍️ 品质消费者 拒绝山寨,追求设计感与耐用性 📱 内容创作者 需要欧洲品牌合作资源 🏢 欧洲中小企业 想进中国但不懂本地规则 🧑💼 跨境电商从业者 寻找差异化货源 💰 四、商业模式(如何赚钱?) 模式 说明 🏢 B2B 服务费 为欧洲品牌提供“进中国”全套数字服务(年费制) 🛒 CPS 分佣 用户通过你的链接购买,获得电商平台佣金 📣 内容营销合作 品牌付费定制内容(如深度测评、视频拍摄) 🎯 精准广告投放 在自有内容中插入相关品牌广告(需透明标注) 🧩 数据报告销售 发布《欧洲品牌中国白皮书》,卖给咨询公司或政府机构 🔗 五、短链系统的升级用法(品牌+追踪) 你原来的“短链”想法依然极有价值,但可以升级为“品牌信任链”: 使用场景: 欧洲品牌在 Instagram 发帖,写: 👉 “点击了解我们在中国的官方信息:zhaneu.com/alpine-ski” 中国博主推荐:“我用的德国护脊书包,点这里看测评 zhaneu.com/backpack” 微信公众号文章嵌入:zhaneu.com/french-wine-tasting 优势: 链接短、好看、可信(.com 域名 + “展欧”背书) 可追踪点击来源(判断哪个平台效果最好) 可做 A/B 测试(不同标题,相同链接) 🌐 六、品牌合作资源从哪里来? 1. 主动出击 LinkedIn 搜索欧洲中小品牌 CEO/市场负责人 参加欧洲 trade fair(如德国科隆展、巴黎家博会) 联系欧洲商会(德国工商会、法国商务投资署) 2. 被动吸引 建一个英文版页面:zhaneu.com/en 标题:“Want to enter China? We speak Chinese for you.” 在欧洲创业论坛、Indie Hackers 发帖 3. 样板案例 先免费服务 3 家欧洲品牌,做出成功案例 制作《某丹麦灯具品牌,3 个月中国销量增长 200%》的案例报告 📈 七、启动路线图(6个月计划) 时间 目标 第1个月 上线网站 MVP:3 篇深度内容 + 2 个品牌案例 + 短链生成器 第2个月 发布第一个《欧洲好物榜》,同步小红书/B站 第3个月 签下第一个付费欧洲客户(可免费试用1个月) 第4个月 推出“品牌入驻计划”,开放申请 第5个月 接入京东国际/CPS 联盟,开始分佣 第6个月 发布《2025欧洲品牌入华趋势报告》 🎁 八、品牌延展建议 项目 说明 ZhanEU 播客 《展欧对话》:采访欧洲品牌创始人 ZhanEU 会员制 年费会员享“欧洲好物内购价” 线下快闪展 在上海/成都办“欧洲生活节” 微信社群 “展欧式生活圈”分享会 ✅ 总结:zhaneu.com 的终极价值 它不是一个简单的网站,而是一个“文化翻译器” + “商业加速器”。 你用一个短域名,做了一件大事: 帮欧洲品牌跨越“文化鸿沟” 帮中国消费者找到“真正的好东西” 自己成为中欧消费市场之间的关键节点 如果你觉得Qwen3这个智能分析不错的话,不妨你也可以试试让语言模型为你出谋划策,培养AI成为你的商务助理。

8 个月前
随着AI技术的发展,客运带货(Passenger + Parcel)的物流模式可以借助人工智能实现智能调度、路径优化、包裹匹配、安全监控和用户体验提升等多个方面的升级。 以下是一个完整的方案,展示如何利用AI技术来实现运输公司“客运车辆带货+智能快递柜+站点网络”的智慧物流系统: ✅ 一、整体目标 通过AI技术,将运输公司的客运资源与电商物流需求结合,打造一个高效、低成本、智能化的最后一公里物流配送系统,特别是在罗马尼亚境内150个车站之间实现包裹的快速流转。 🧠 二、AI技术在客运带货中的应用场景 1. 智能订单匹配系统 AI算法分析每日乘客流动方向、大巴运行路线和包裹数量 自动匹配合适的班次运输包裹,避免空载浪费 支持动态调整:根据实时客流变化决定是否安排某趟车带货 示例:从 C 城市到 T 城市的班车,如果当天乘客不多,可安排搭载一定量的小件包裹。 2. 路径优化与调度系统 使用 AI 路径规划工具(如基于机器学习的 TSP/VRP 算法) 动态优化包裹运输路径,减少中转次数和时间 结合天气、交通状况、站点吞吐能力等数据预测最优路线 技术支持:Google OR-Tools、百度Apollo、菜鸟自有路径优化系统等 3. 智能快递柜管理系统 每个站点部署由制造企业生产的智能快递柜 利用 AI 进行: 快递柜仓位分配(按包裹大小、时效优先级) 用户取件行为预测(高峰时段自动预分配) 异常检测(如长时间未取件、开箱失败等) 可集成面部识别、扫码、NFC等多种验证方式,提升安全性 4. 包裹装载与卸载自动化 在大型仓库或枢纽站点使用 AI 驱动的机器人进行分拣 利用计算机视觉识别包裹条码、尺寸、目的地 自动分类并装入对应线路的大巴车厢指定位置 示例:AI视觉系统识别“布加勒斯特”目的地的包裹,并自动引导机械臂放入该方向的运输舱 5. 车载AI监控系统 在大巴上安装摄像头 + AI 边缘计算设备 实时监控包裹状态(是否被误拿、损坏、超限) 识别异常行为(如暴力装卸、非授权人员接触包裹) 可与司机APP联动,一旦发现问题立即报警 6. 用户通知与体验优化 利用 NLP(自然语言处理)技术自动生成多语言通知短信/邮件 根据用户历史行为预测最佳取件时间 提供包裹追踪地图、预计到达时间、延迟预警等服务 示例:用户收到推送:“您的包裹已抵达 C 车站,请于今日内前往XX站点取件” 🔧 三、系统架构图(简化版) [电商平台/菜鸟] ↓ [AI订单匹配系统] ↓ [路径优化 & 调度引擎] ↓ [仓储机器人分拣 + 包裹装载] ↓ [客运车辆 + 车载AI监控] ↓ [站点智能快递柜] ↓ [用户取件 + 反馈收集] 📈 四、实施建议与阶段划分 阶段 时间 目标 Phase 1: 试点系统搭建 3-6个月 选择5-10个站点,部署AI快递柜+基础调度系统 Phase 2: 全面接入AI调度 6-12个月 上线完整AI订单匹配与路径优化系统 Phase 3: 自动化仓储与车载监控 1-2年 安装机器人分拣和车载AI监控系统 Phase 4: 拓展至跨境物流 2-3年 接入菜鸟国际网络,实现中欧跨境电商最后一公里配送 🧩 五、可合作的技术平台推荐 技术模块 推荐平台或合作伙伴 AI路径优化 Google OR-Tools, 百度 Apollo, 菜鸟 Cainiao Routing 智能快递柜 自主研发,集成菜鸟柜控系统 分拣机器人 极智嘉(Geek+)、快仓、立镖机器人 车载AI监控 商汤科技、旷视科技、华为 Atlas 数据平台 阿里云、AWS IoT Core、微软 Azure IoT 📌 六、盈利与价值创造 价值点 描述 成本降低 利用现有运力,减少额外物流成本 效率提升 AI优化后,平均配送时间缩短15%-30% 增值服务 提供包裹保险、加急派送、逆向物流等服务 数据变现 积累用户行为数据,用于广告投放或电商推荐 ✅ 七、总结 通过引入 AI 技术,运输公司不仅可以实现“客运带货”的高效运作,还可以构建一个智能化、可扩展、面向未来的本地物流生态系统。这不仅能增强公司的盈利能力,还能为罗马尼亚乃至东欧地区的电商发展提供强大基础设施支撑。

10 个月前
3月6日凌晨,阿里巴巴发布并开源全新的推理模型通义千问QwQ-32B: 模型性能 媲美大参数模型:拥有320亿参数,性能可与具备6710亿参数(其中370亿被激活)的DeepSeek - R1媲美,很大程度上证明了参数规模不再是模型性能的决定性因素。 超越同类模型:在一系列权威基准测试中表现出色,几乎完全超越了OpenAI去年9月发布的尺寸相近的o1 - mini模型。在测试数学能力的AIME24评测集、评估代码能力的LiveCodeBench中,表现与DeepSeek - R1相当,远胜于o1 - mini及相同尺寸的R1蒸馏模型;在LiveBench、谷歌提出的IFEval评测集、加州大学伯克利分校等提出的BFCL测试中,得分均超越了DeepSeek - R1。 技术特点 本地部署优势:突破性地让高性能推理模型在消费级显卡上实现本地部署,英伟达4090的增强版就能部署,大幅降低了模型应用成本,成本是R1的1/10以内,更利于推理模型的应用和普及。 集成Agent能力:集成了与智能体(Agent)相关的能力,使其能够在使用工具的同时进行批判性思考,并根据环境反馈调整推理过程。 大规模强化学习:在冷启动的基础上,针对数学和编程任务、通用能力分别进行了两轮大规模强化学习,在32B的模型尺寸上获得了令人惊喜的推理能力提升,印证了大规模强化学习可显著提高模型性能。与依赖传统的奖励模型不同,通过校验生成答案的正确性来为数学问题提供反馈,并通过代码执行服务器评估生成的代码是否成功通过测试用例来提供代码的反馈。 开源情况:采用Apache 2.0开源协议,已在魔搭社区、HuggingFace及GitHub等平台开源,所有人都可免费下载及商用QwQ - 32B模型,可通过网页版Qwen Chat进行体验,也将免费上架通义APP。

11 个月前
随着人工智能技术的飞速发展,越来越多的企业和开发者开始将目光投向这一领域。作为阿里巴巴集团旗下的通义实验室自主研发的超大规模语言模型,通义千问(Qwen)始终致力于为用户提供更加智能、便捷的服务体验。通义千问近日正式启用了全新的AI Chat域名及界面——chat.qwen.ai!这不仅是一次简单的域名更新,更是我们在用户体验优化和服务升级方面迈出的重要一步。 全新域名:简洁易记,专业高效 从现在起,用户只需访问 chat.qwen.ai,即可快速进入通义千问的AI对话平台。相比之前的入口,新域名更加简洁直观,便于记忆与传播。无论是个人用户还是企业开发者,都能通过这个统一的入口,轻松获取到所需的服务和支持。 简洁性:新域名去掉了冗余的部分,让用户一目了然。 专业性:明确指向“Chat”功能,突出我们的核心竞争力——强大的自然语言处理能力。 全球化:采用国际通用的“.ai”后缀,彰显我们在人工智能领域的领先地位。 界面焕新:更友好、更智能 除了域名的变化,通义千问的界面也进行了全面升级。新的设计风格更加现代化,操作流程更加流畅,旨在为每一位用户提供极致的交互体验。 1. 清晰的布局 新界面采用了更加清晰的功能分区,首页即展示了主要功能模块,如文本生成、代码编写、多语言支持等。无论你是初次使用还是资深用户,都能迅速找到自己需要的内容。 2. 个性化设置 用户可以根据自己的偏好调整聊天窗口的主题颜色、字体大小等细节,打造专属的使用环境。此外,我们还新增了夜间模式,让深夜工作的你也能舒适地与AI交流。 3. 增强的多轮对话能力 在新版界面中,通义千问的多轮对话功能得到了进一步加强。系统能够更好地理解上下文信息,提供连贯且精准的回答。即使面对复杂的问题或场景切换,也能保持高度的准确性。 4. 丰富的插件支持 为了满足不同用户的需求,我们引入了多种实用插件,例如文档解析、图像生成、视频编辑等。这些插件可以无缝集成到主界面中,极大提升了工作效率和创作灵感。 核心亮点:技术创新驱动优质服务 1. 超大规模参数量 基于阿里云强大的计算资源,通义千问拥有超过万亿级别的参数规模,确保了模型的强大表达能力和泛化性能。这种规模的优势使得通义千问能够在各种任务上表现出色,无论是生成高质量的文章、撰写复杂的代码,还是进行多语言翻译,都能游刃有余。 2. 多模态融合 除了传统的文本处理外,通义千问在图像、音频等领域也取得了突破性进展,真正实现了跨模态的理解与生成。例如,通义万相是通义实验室推出的一站式AI艺术创作平台,它结合了文生图、图像风格迁移、手绘草图生成精美图片等能力,为用户提供丰富的创意工具。 3. 安全与隐私保护 我们深知数据安全的重要性,因此在新版本中进一步加强了加密措施,保障用户信息安全无忧。阿里云一直致力于构建一个安全可靠的技术平台,确保用户的隐私和数据得到妥善保护。 4. 高效推理与训练 通义千问依托阿里云的高效推理和训练框架,能够在短时间内完成大量数据的处理和学习。这种高效的处理能力使得通义千问能够快速适应新的应用场景和需求,为用户提供更加及时和准确的服务。 5. 广泛的行业应用 通义千问已经在多个行业中得到了广泛应用,包括电商、金融、医疗、教育等。例如,在电商领域,通义千问可以帮助商家自动生成商品描述、回答客户咨询;在金融领域,它可以协助分析师进行市场预测和风险评估;在医疗领域,它可以辅助医生进行疾病诊断和治疗方案推荐。 结语 随着 chat.qwen.ai 的上线,通义千问将以全新的姿态迎接每一位用户的到来。未来,我们将继续秉承“让机器更好地服务于人”的理念,不断探索前沿技术,努力为全球用户带来更多惊喜。如果你还没有尝试过通义千问,请立即访问 chat.qwen.ai,开启属于你的智能之旅吧!

11 个月前
高盛报告:阿里巴巴领衔AI基建,腾讯主导AI应用领域 2月14日,高盛发布最新研究报告,揭示了中国互联网行业在人工智能(AI)技术快速发展背景下的新格局。报告指出,行业正逐渐分化为两大阵营:AI基础设施建设和AI应用开发。阿里巴巴凭借其强大的云服务基础设施,成为AI基建领域的关键力量;而腾讯则依托其在消费者端(C端)应用的广泛生态和卓越用户体验,成为AI应用领域的核心推动者。 报告详细分析了两家公司的优势:阿里巴巴作为中国最大的云服务提供商,其规模优势在AI基础设施建设中占据重要地位,预计在2026财年将实现14倍的预期市盈率。腾讯则凭借其微信超级应用的潜在AI代理功能和闭环交易能力,在2025财年预期市盈率达到16倍,同时腾讯云在中国公共云市场中也稳居前三。 报告进一步预测,随着中国AI模型的灵活性和计算成本效率的显著提升,超级应用如微信和抖音将继续深化在电子商务和本地服务等交易领域的应用。此外,随着开源模型的兴起和计算成本的降低,AI的采用率将进一步提高,特别是在支持多年云和数据中心需求增长的企业端(B端)场景中。 高盛特别强调,腾讯通过其强大的C端生态和用户体验,将AI技术深度融入日常生活。报告以元宝为例,指出其快速崛起是腾讯在AI应用领域实力的体现。元宝集成了DeepSeek-R1模型的强大推理能力和腾讯云的AI推理基础设施,不仅提供了更智能的交互体验,还通过微信生态的独特内容支持,实现了更精准的信息推送和更高效的任务执行。 报告最后指出,集成R1后的元宝在用户体验上实现了质的飞跃,用户可以通过多轮对话和深度思考模式,快速获取微信公众号、视频号等生态内的丰富内容,进一步巩固了腾讯在AI应用领域的领先地位。
Minimax(海螺AI)已由大模型名Minimax替换原海螺AI。现海螺AI为Minimax视频生成产品名。
海螺AI