华为昇腾推出的Atlas 900 SuperCluster成为国产AI算力的重要突破,标志着华为在超大规模AI训练集群领域的领先地位。
华为Atlas 900 SuperCluster的推出,不仅提升了国产AI集群的竞争力,也为全球AI算力格局注入了新变量。随着生态完善,昇腾有望在AI训练与推理市场占据更关键地位。
(根据资讯整理)
13 天前
华为昇腾推出的Atlas 900 SuperCluster成为国产AI算力的重要突破,标志着华为在超大规模AI训练集群领域的领先地位。 1. 技术突破与性能表现 超大规模算力支持:Atlas 900 SuperCluster 采用创新的超节点架构,支持超万亿参数大模型训练,单集群可管理数十万张昇腾AI加速卡(如昇腾910B),并实现高可用性设计,包括超高速互联、高效液冷散热和瞬时爆发供电。 性能对标英伟达A100:实测数据显示,昇腾AI集群在训练Meta Llama、BloomGPT等模型时,效率可达英伟达A100的1.1倍,并在部分场景实现10倍领先于其他国产方案。 国产化算力标杆:科大讯飞等企业已采用昇腾万卡集群,训练效率达到英伟达A100的0.8~1.2倍,证明其在国产大模型训练中的竞争力。 2. 架构与生态创新 全栈自主可控:从硬件(昇腾芯片、鲲鹏CPU)、架构(达芬奇架构)、软件(MindSpore框架)到开发工具(CANN异构计算),华为构建了完整的AI计算产业链。 昇腾910B芯片升级:相比前代昇腾910,910B在FP32性能上显著提升,支持多NPU模组互联,提供更高带宽和算力密度,进一步缩小与英伟达高端GPU的差距。 生态挑战与机遇:尽管昇腾算力已对标英伟达,但CUDA生态的成熟度仍是竞争短板。华为通过开源MindSpore、适配主流框架(如PyTorch、TensorFlow)及开发者扶持计划(如15亿美元生态投入)加速生态建设。 华为Atlas 900 SuperCluster的推出,不仅提升了国产AI集群的竞争力,也为全球AI算力格局注入了新变量。随着生态完善,昇腾有望在AI训练与推理市场占据更关键地位。 (根据资讯整理)
1 个月前
从传统认知来看,算力、算法和数据被认为是人工智能的核心三大要素。当大模型出现后,大模型在当前人工智能发展中占据着极其重要的地位。 大模型与算法的关系:从属而非取代。传统算法的定位:算法本质是解决问题的步骤规则,如SVM、随机森林等,是AI的底层方法论。 大模型的本质:大模型是算法的一种高级形态,依托深度学习(尤其是Transformer架构)实现,其核心仍是算法逻辑的演进。例如,GPT的生成能力源于自注意力机制(算法创新),而非脱离算法的新存在。 大模型为何需要独立强调? 尽管大模型属于算法范畴,但其独特性使其具备基础设施属性: 平台化能力:如GPT-4可作为基础平台,支撑多样下游任务(写代码、客服、科研),类似操作系统。 资源门槛:训练大模型需超算集群和千亿级数据,远超传统算法,成为独立的技术-资源综合体。 生态影响:催生模型即服务(MaaS),改变行业分工(如企业无需自研模型,调用API即可)。 AI的核心能力确实高度依赖于数据、算力和大模型,但这三者并非全部。它们是推动现代AI发展的基础设施,但真正的核心能力还需结合其他关键要素,以下分层次解析: 1. 数据、算力、大模型的角色 数据:AI的“燃料”,尤其是监督学习和自监督学习依赖海量标注或无标注数据(如GPT-4训练用了数万亿词元)。 算力:硬件(如GPU/TPU集群)支撑大规模训练和推理,例如训练GPT-4需数万块GPU和数月时间。 大模型:通过参数量的增加(如千亿级参数)实现更强的泛化和多任务能力,如Transformer架构的涌现能力。 2. 被忽视的核心要素 算法创新: 数据与算力的价值需通过算法释放。例如,Transformer(2017)相比RNN的突破、扩散模型对生成任务的改进,均源于算法设计。 小样本学习(Few-shot Learning)、强化学习的策略优化(如PPO算法)证明:算法效率可弥补数据或算力的不足。 工程能力: 分布式训练框架(如Megatron、DeepSpeed)、模型压缩(量化、蒸馏)等技术,决定大模型能否实际落地。 领域知识: 医疗AI依赖专家标注和病理学知识,自动驾驶需融合传感器物理模型,说明垂直场景的壁垒远超大模型本身。 3. 未来趋势:超越“大力出奇迹” 高效训练与推理: 低功耗芯片(如神经拟态计算)、MoE架构(如Mixtral 8x7B)正降低对算力的依赖。 数据质量 vs 数量: 合成数据(如NVIDIA Omniverse)、数据清洗技术逐步减少对纯数据量的需求。 可解释性与安全: 模型对齐(Alignment)、因果推理等能力将成为下一代AI的竞争焦点(如Anthropic的Claude 3)。 4. 总结:AI的核心能力是“系统级创新” 短期:数据、算力、大模型是入场券; 长期:算法设计、跨学科融合(如神经科学)、工程优化、伦理治理等系统性能力才是关键。 类比:如同火箭需要燃料(数据)、引擎(算力)、设计(模型),但真正的突破来自材料科学(算法)与控制系统(工程)。 未来AI的竞争将不仅是资源的堆砌,而是如何用更少的资源解决更复杂的问题,这需要多维度的创新能力。
2 个月前
2025年2月18日,“2025医疗人工智能与精准诊疗发展论坛”在瑞金医院召开。此次盛会汇聚了众多行业专家、学者及华为代表,共同见证瑞智病理大模型RuiPath的发布。 近年来,AI技术在全球范围内蓬勃发展,为各行业带来了深刻变革,医疗领域也不例外。为有效提升病理切片检查的效率和诊断准确率,瑞金医院携手华为公司推进数字化智慧病理科建设并获得成果。此次活动线上、线下同步播出,由瑞金医院-上海市数字医学创新中心朱立峰主持。 致辞嘉宾: 宁光 中国工程院院士/瑞金医院院长 上海市医院协会副会长 看着台下爆满的会场,我深切感受到:这场技术浪潮已然到来。我也曾学习安装豆包、摸索Kimi、尝试DeepSeek——这些过程让我逐步思考:当AI重构社会的速度远超想象时,医院正面临更多机遇和挑战。 我们像活在玻璃瓶里的人,瓶外的铁锤随时可能落下。三年前讨论的“未来技术”,如今已成为基础工具。瑞金医院选择主动打碎瓶子,找到临床应用中的“刚需”,助力病理科图像分析,今天我们将一起见证瑞智病理大模型RuiPath的发布。除此以外,我们还将感受更震撼的多模态融合。 可以想见,如果华为的ICT基础设施、联通的传输能力这些技术若注入医疗场景,那将是怎样的盛宴。但比技术更重要的,是守住生命至上的底线——我们只用经得起验证的技术。在此向全国同仁发出邀请:瑞金医院愿意做医疗AI的“创新实验室”。我们深知机器必然替代部分人力,但人文关怀永远不可替代,让我们共同构建“技术-人文”双螺旋,为你的梦想插上一双“理性的翅膀”。 冯骏 上海市卫生健康委员会(信息化管理处)副主任 当前AI技术推动医疗向智能化、精准化迈进,国家积极推进卫生健康行业“人工智能+”应用创新发展,上海致力于打造医学人工智能高地,已发布相关方案,将推进医疗健康数据新型基础设施建设等工作。本次论坛聚焦病理诊断中AI应用创新,该技术有望缓解病理医生资源短缺,提升检查效率和诊断准确率。此次瑞金医院与华为合作,发布的大模型是重要一步,期待此次大会医生、专家共同探讨未来方向,为健康中国建设贡献力量。 王育 上海申康医院发展中心副主任 国家妇产疾病临床医学研究中心上海分中心负责人 近年来,AI技术在全球蓬勃发展,在医疗领域带来变革,国家重视并出台文件推进医疗AI创新应用。上海作为前沿阵地积极响应,申康医院发展中心推动市级医院医学AI部署应用。病理AI发展有着重要意义,期待此次论坛为医疗AI发展注入动力,助力公立医院高质量发展。同时,也希望通过此次论坛能够进一步加强产学研用的深度融合,促进人工智能技术在医疗领域的转化与落地。 胡建平 国家卫生健康委统计信息中心原副主任 中国卫生信息与健康医疗大数据学会副会长 当前健康中国与数字中国战略深度融合,我们正推动经验医学向精准医学的历史性跨越。在此进程中,病理诊断作为临床金标准,其革新意义尤为重大。AI不仅提升病理诊断效率和准确性,更能将专家经验转化为普惠资源。瑞金医院与华为的合作具有示范价值——通过百万级病理数据与先进数据存力的融合,实现了从数字化病理到智能化诊疗的突破。 瑞智病理大模型RuiPath发布 王朝夫 上海交通大学医学院病理学系主任 瑞金医院病理科主任 自2021年底启动以来,瑞金医院病理科在院领导支持下,与合作伙伴紧密协作,实现了从信息化到数字化再到智能化的跨越。2023年3月,端到端数字化智慧病理系统上线,标志着我们迈入新时代。我们坚持“以场景驱动技术,以技术赋能场景”的理念,汇聚多方力量,攻克难题。今天,瑞智病理大模型RuiPath的发布,标志着瑞金病理科在智能化领域迈出了更加坚实的一步,也为我国病理诊断的均质化、高效化发展注入了新的潜能。 笪倩 瑞金医院病理科主任助理 当前,病理面临数字化程度低、数据质量参差不齐等挑战。瑞金医院病理科依托医院大模型布局,基于百万级数字切片库,打造了瑞智病理大模型RuiPath。RuiPath实现4大创新,包括场景与应用创新、模型与算法创新、存算协同创新和AI工具链创新。RuiPath覆盖了中国每年90%癌症发病人群罹患的癌种,并且亚专科知识问答深度达到专家级知识水平,改变传统病理医生的工作模式,提升了诊断效率与质量。未来,我们将继续技术创新,推动标准建立,打造“无人病理科”,复制瑞金模式,服务更多患者。 周跃峰 华为公司副总裁、数据存储产品线总裁 AI正在重构千行万业,造就数据的黄金时代,然而AI进入各行业仍面临着三大挑战。首先,从通用大模型到行业场景大模型,需要进行针对性训练;其次,行业场景模型训练和应用落地难,项目开发难度大,人员技术要求高,开发周期不可控;最后,AI集群可用度往往不足50%,需要不断提升全系统调度效率。基于以上挑战,华为提供DCS AI解决方案,构筑行业大模型根基。 (信息来源:华夏病理网)
3 个月前
中美 AI 竞争已进入白热化阶段,技术差距的缩小、数据瓶颈的突破以及地缘政治的影响将成为未来 AI 发展的关键因素。
4 个月前
中国政府对美国半导体巨头NVIDIA采取了一系列反制措施,这不仅直接冲击了NVIDIA在中国市场的业务,也引发了市场对人工智能(AI)领域领军企业NVIDIA繁荣时代是否即将结束的广泛担忧。 中国的反击措施包括但不限于加强对外国半导体技术的出口限制、加大对本土半导体产业的财政和政策支持,以及推动国内企业在高端芯片技术领域的自主研发。这些措施的核心目的是减少对外国技术的依赖,特别是在关键的AI和高性能计算领域。 作为全球最大的AI芯片供应商之一,NVIDIA在中国市场拥有显著的份额。中国不仅是NVIDIA产品的重要销售市场,也是其研发和创新的重要基地之一。然而,随着中国政府政策的转向,NVIDIA在这一关键市场的前景变得不确定。 分析师指出,中国的这一系列举措可能会导致NVIDIA在中国的收入显著下降,从而对其整体财务表现产生负面影响。此外,这也可能加速中国本土半导体企业的崛起,如中芯国际和紫光国微等,这些企业正致力于在高端芯片领域与NVIDIA竞争。长远来看,这种竞争可能会挑战NVIDIA在全球AI芯片市场的领导地位。 市场对这一消息的反应迅速而强烈。NVIDIA的股票在消息公布后迅速下跌,跌幅超过了5%,投资者对于NVIDIA未来在中国市场的前景以及整个AI行业的发展趋势感到不确定。一些投资者甚至开始重新评估其在NVIDIA股票上的投资组合,担心这一事件可能是一个更广泛市场动荡的前兆。 这一事件标志着中美在高科技领域竞争的加剧,特别是在关键的半导体和人工智能技术领域。双方的政策博弈不仅影响到企业的商业运营,也可能对全球技术发展和产业格局产生深远影响。市场和业界都在密切关注接下来的发展,以评估这些政策变化对NVIDIA和整个AI行业的长期影响。 中国的反击措施使得NVIDIA股票受压,市场对其繁荣时代是否结束产生担忧。这一事件反映了中美在高科技领域的激烈竞争,也可能预示着全球半导体和AI产业格局的重大调整。未来,随着双方政策的进一步演变和市场的自我调整,NVIDIA及其竞争对手将面临新的挑战和机遇。投资者和企业都需要保持高度警惕,密切关注相关动态,以做出明智的决策。 新闻来源:MSN德语财经频道
4 个月前
Google宣布了其新型量子计算芯片Willow,这是在量子计算领域长达十年的征程中迈出的重要一步!
7 个月前
海光处理器属于GPGPU架构,通用且场景支撑能力强,这是国内唯一具备全精度浮点数据计算能力的厂商。
8 个月前
每秒1832token极限推理速度
8 个月前
观察者网今日发表了一篇题为《中企这么做,正让美国限制变得毫无意义》的文章。 这篇文章介绍了中国公司如何在美方限制先进芯片的情况下开发自己的AI技术。它讨论了这些公司提高效率和创建更小、更专业的模型的方式。 该文章还强调了中国公司开发的AI应用数量不断增长。一些重要观点是,中国在AI专利申请方面处于世界领先地位,中国公司正在开发自己的芯片以减少对外国技术的依赖。 文章详细介绍了中国公司在AI领域取得的进展,包括: 开发了新的训练方法,例如使用更少的数据和更小的模型,以提高效率。 开发了自己的AI芯片,以减少对外国技术的依赖。 在应用AI到现实世界问题方面处于领先地位。 中国在AI领域取得的进展是其科技实力不断增强的体现。
8 个月前
华为的FusionPower业务单元主要关注的是智能电力解决方案,对于FusionPower这样的智能电力解决方案,虽然其核心不是人工智能,但很可能采用了华为的其他产品和服务中的AI技术。