阿里巴巴达摩院推出的超大规模中文预训练模型(M6)
M6是中文社区最大的跨模态预训练模型,模型参数达到十万亿以上,具有强大的多模态表征能力。M6通过将不同模态的信息经过统一加工处理,沉淀成知识表征,为各个行业场景提供语言理解、图像处理、知识表征等智能服务。
推动AI普惠化
M6以预训练模型的形式输出泛化能力,下游只需提供场景化数据进行优化微调,就能快速产出符合行业特点的精准模型。
预训练大模型代表了AI开发和使用的新模式,降低了AI使用门槛,推动AI在各行各业的落地和普及。
- 高精度 - 低门槛 - 多模态

应用场景
推荐理由文案创作
依据图像生成推荐理由
支持卖点标签增强文案可控性
少量样本即可得到可用结果
图文商品检索
基于多模态的商品表征提取
支持有监督(行为日志)、无监督训练模式
集成最新对比学习的研究成果
鞋服、包装设计
文本控制的图像生成
支持生成最高1024*1024清晰度的图像
基于VQGAN和Transformer的两阶段方法
汽车外观
多种汽车的设计融合
少量文本或图像生成新风格汽车
多角度图像实现汽车3D展示
观点抽取
准确度极高的金融文章摘要
准确的数字感知
可以作为金融财经相关段落的标题
事件点评
重点针对金融事件进行分析
能够模仿大V的风格做点评
可以用于娱乐,但不能构成投资建议

6 天前
Xiaomi-Robotics-0 预训练了大量跨身体机器人轨迹和视觉语言数据,使其能够获得广泛且可推广的动作生成知识,同时保持强大的VLM能力。

19 天前
AI Agent 的真正智能,来自于知识获取(RAG) + 协作协议(MCP) + 执行能力(SKILLS)的统一协同,而不是单一大模型孤立输出。

22 天前
命令优先,而非图形界面。

1 个月前
这正是当前 AI 视频生成领域最前沿的突破方向。你提出的这个问题,本质上是在问如何让 AI 从“画皮”进阶到“画骨”——即不仅画面好看,运动逻辑也要符合现实世界的物理法则。 结合最新的技术进展(如 2025 年的相关研究),要让 AI 生成符合真实规律的视频,我们可以通过以下几种“高级语言描述法”来与模型沟通: 1. 使用“力提示”技术:像导演一样指挥物理力 🎬 这是谷歌 DeepMind 等团队提出的一种非常直观的方法。你不需要懂复杂的物理公式,只需要在提示词中描述“力”的存在。 描述力的方向与强度: 你可以直接告诉 AI 视频中存在某种力。例如,不只是写“旗帜飘动”,而是写“旗帜在强风中剧烈飘动”或“气球被轻轻向上吹起”。 区分全局力与局部力: 全局力(风、重力): 影响整个画面。例如:“Global wind force blowing from left to right”(从左到右的全局风力)。 局部力(碰撞、推力): 影响特定点。例如:“A ball rolling after being kicked”(球被踢后滚动)。 效果: AI 模型(如 CogVideoX 结合特定模块)能理解这些力的矢量场,从而生成符合动力学的运动,比如轻的物体被吹得更远,重的物体移动缓慢。 2. 调用“思维链”与物理常识:让 LLM 当质检员 🧠 有时候直接描述很难精准,我们可以借助大型语言模型(LLM)作为“中间人”来审核物理逻辑。这种方法(如匹兹堡大学的 PhyT2V)利用 LLM 的推理能力。 分步描述(Chain-of-Thought): 你可以在提示词中要求 AI “思考过程”。例如,不只是生成“水倒入杯子”,而是引导它:“首先,水从壶嘴流出,形成抛物线;然后,水撞击杯底,产生涟漪;最后,水位上升,流速减慢。” 明确物理规则: 在提示词中直接嵌入物理常识。例如:“根据重力加速度,球下落的速度应该越来越快”或“流体具有粘性,流动时会有拉丝效果”。 回溯修正: 如果第一版视频不符合物理规律(比如球浮在空中),你可以通过反馈指令让系统进行“回溯推理”,识别出视频与物理规则的语义不匹配,并自动修正提示词重新生成。 3. 参数化控制:像物理老师一样给定数值 📏 如果你需要极其精确的物理运动(例如做科学实验模拟或电影特效),可以使用类似普渡大学 NewtonGen 框架的思路,直接给定物理参数。 设定初始状态: 在语言描述中包含具体的物理量。 位置与速度: “一个小球从坐标 (0, 10) 以初速度 5m/s 水平抛出”。 角度与旋转: “一个陀螺以角速度 10rad/s 旋转”。 质量与材质: “一个轻质的泡沫块”与“一个沉重的铁球”在相同力作用下的反应是不同的。 指定运动类型: 明确指出是“匀速直线运动”、“抛物线运动”还是“圆周运动”。AI 会根据这些语义,调用内置的“神经物理引擎”来计算轨迹,确保视频中的物体运动轨迹符合牛顿定律。 4. 结合物理引擎的混合描述:虚实结合 🧩 更高级的方法是让语言描述直接驱动物理模拟器(如 Blender, Genesis),然后将结果渲染成视频。 描述物理属性: 在提示词中指定物体的密度、弹性系数、摩擦力等。 事件驱动描述: 描述物体间的相互作用。例如:“一个刚性的小球撞击一个柔软的布料,布料发生形变并包裹住小球”。 通用物理引擎: 像 Genesis 这样的新模型,允许你用自然语言描述复杂的物理场景(如“一滴水滑落”),它能直接生成符合流体动力学的模拟数据,而不仅仅是看起来像视频的图像帧。 📝 总结:如何写出“物理级”提示词? 为了更直观地掌握这种描述方式,这里总结了一个对比表: 一句话总结: 要用语言描述物理运动,关键在于将“视觉结果”转化为“物理过程”。多用描述力(风、推力)、属性(重力、粘性)、参数(速度、角度)的词汇,甚至直接告诉 AI 要遵循某种物理规律,这样生成的视频才会有真实的“重量感”和“真实感”。

1 个月前
利用大语言模型(LLM)构建虚拟的“世界模型”(World Models),以此作为 KI 智能体(AI Agents)积累经验和训练的场所。 核心概念:让 LLM 成为 AI 的“模拟练习场” 目前,开发能在现实世界执行复杂任务的 AI 智能体(如机器人、自动化软件助手)面临一个巨大挑战:获取实际操作经验的成本极高且充满风险。 如果让机器人在物理世界中通过“试错”来学习,不仅效率低下,还可能造成硬件损毁。 研究人员提出的新思路是:利用已经掌握了海量人类知识的大语言模型(LLM),由它们通过文字或代码生成一个模拟的“世界模型”。 1. 什么是“世界模型”? 世界模型是一种模拟器,它能预测特定行为可能产生的结果。 传统方式: 需要开发者手动编写复杂的代码来定义物理法则和环境规则。 LLM 驱动方式: 预训练的大模型(如 GPT-4 或 Claude)已经具备了关于世界运行逻辑的知识(例如:知道“推倒杯子水会洒”)。研究人员可以利用 LLM 自动生成这些模拟环境的逻辑。 2. 研究的具体内容 来自上海交通大学、微软研究院、普林斯顿大学和爱丁堡大学的国际研究团队对此进行了深入研究。他们测试了 LLM 在不同环境下充当模拟器的能力: 家庭模拟(Household Simulations): 模拟洗碗、整理房间等日常任务。 电子商务网站(E-Commerce): 模拟购物行为、库存管理等逻辑。 3. 关键发现: 强结构化环境表现更佳: 在规则清晰、逻辑严密的场景(如简单的文本游戏或特定流程)中,LLM 驱动的模拟效果非常好。 开放世界的局限性: 对于像社交媒体或复杂的购物网站这类高度开放的环境,LLM 仍需要更多的训练数据和更大的模型参数才能实现高质量的模拟。 真实观察的修正: 实验显示,如果在 LLM 模拟器中加入少量来自现实世界的真实观察数据,模拟的质量会显著提升。 对 AI 行业的意义 加速 AI 智能体进化: 这种方法让 AI 智能体可以在几秒钟内完成数千次的虚拟实验,极大加快了学习速度。 降低训练门槛: 开发者不再需要搭建昂贵的物理实验室,只需要调用 LLM 接口就能创建一个“训练场”。 2026 年的趋势: 这预示着 2026 年及以后,“自主智能体”将成为 AI 发展的核心,而这种“基于模拟的学习”将是通往通用人工智能(AGI)的关键一步。 总结 该研究证明,LLM 不仅仅是聊天机器人,它们可以演变成复杂的“数字世界创造者”。在这个虚拟世界里,新一代的 AI 智能体可以安全、低成本地反复磨练技能,最终再将学到的能力应用到现实生活和工作中。 ( 根据海外媒体编译 )

2 个月前
Nova 2是亚马逊于2025年12月在re:Invent 全球大会上推出的新一代基础模型家族,共包含4款模型,均需通过Amazon Bedrock平台使用,兼顾行业领先的性价比与多场景适配性,具体介绍如下 : 1. Nova 2 Lite: 主打快速、高性价比的日常推理任务,可处理文本、图像和视频输入并生成文本。能通过调节“思考”深度平衡智能、速度与成本,适合客服聊天机器人、文档处理等场景。在基准测试中,它对标Claude Haiku 4.5、GPT - 5 Mini等模型,多数项目表现持平或更优。 2. Nova 2 Pro(预览版): 是该家族中智能度最高的推理模型,可处理文本、图像、视频和语音输入并生成文本。适配代理编码、长期规划等复杂任务,还能作为“教师模型”向小型模型传递能力,在与Claude Sonnet 4.5、Gemini 2.5 Pro等主流模型的对比中,多项基准测试表现出色。 3. Nova 2 Sonic: 专注端到端语音交互的模型,能实现类人化实时对话。它支持多语言与丰富音色,拥有100万token上下文窗口,可支撑长时交互,还能与Amazon Connect等语音服务、对话框架无缝集成,适配客服、AI助手等语音场景。 4. Nova 2 Omni: 业内首款统一多模态推理与生成模型,可处理文本、图像等多种输入,还能同时生成文本和图像。它能一次性处理海量多格式内容,比如数百页文档、数小时音频等,适合营销素材一站式制作等需要整合多类信息的场景。 这4款模型均具备100万token上下文窗口,且内置网页查找和代码执行能力,能保障回答的时效性与实用性 。

2 个月前
LoRA(Low-Rank Adaptation)是一种对大模型进行“轻量级微调”的技术。

3 个月前
Gemini 3 标志着AI模型从“增量优化”向“范式转变”的重大跃进。
Minimax(海螺AI)已由大模型名Minimax替换原海螺AI。现海螺AI为Minimax视频生成产品名。
海螺AI