在大模型(如深度学习模型)中,微调(Fine-Tuning)是指在预训练模型的基础上,对模型进行进一步的训练,以适应特定任务或数据集的需求。预训练模型通常是在大规模数据集上训练的,具有很好的泛化能力,但可能不完全适合特定的任务或数据集。微调的目的是通过对预训练模型进行少量的调整,使其更好地适应特定的任务或数据集。
微调通常包括以下步骤:
微调的好处包括:
常见的微调方法包括:
总之,微调是大模型中一个重要的技术,用于提高模型的适应性和准确性。
来源:HuggingChat
2 个月前
BERT(Bidirectional Encoder Representations from Transformers)是由Google于2018年发布的一种预训练语言模型,基于Transformer架构,用于自然语言处理(NLP)任务。它的双向(Bidirectional)上下文理解能力使其在文本理解、问答系统、文本分类等任务中表现卓越。 BERT的核心特点 1. 双向上下文理解 传统语言模型(如GPT)通常是单向的(从左到右或从右到左)。 BERT采用Masked Language Model(MLM,掩码语言模型),即在训练过程中随机遮挡部分词语,并让模型根据上下文预测这些被遮挡的词,从而实现双向理解。 2. 预训练+微调(Pre-training & Fine-tuning) 预训练(Pre-training):在海量无标注文本数据(如维基百科、BooksCorpus)上进行训练,使BERT学会通用的语言知识。 微调(Fine-tuning):针对具体任务(如情感分析、问答系统、命名实体识别)进行轻量级训练,只需少量数据,即可获得良好效果。 3. 基于Transformer架构 BERT使用多层Transformer编码器,通过自注意力(Self-Attention)机制高效建模文本中的远程依赖关系。 Transformer结构相比RNN和LSTM,更适合并行计算,处理长文本能力更强。 BERT的两大核心任务 Masked Language Model(MLM,掩码语言模型) 在训练时,随机遮挡输入文本中的15%单词,让模型根据上下文预测这些词。 这种方法使BERT学习到更深层次的语言表示能力。 Next Sentence Prediction(NSP,下一句预测) 让模型判断两个句子是否是相邻句: IsNext(相关):句子A和B是原始文本中相连的句子。 NotNext(无关):句子B是随机选择的,与A无关。 这一任务有助于提高BERT在问答、阅读理解等任务中的能力。 BERT的不同版本 BERT-Base:12层Transformer(L=12)、隐藏层768维(H=768)、12个自注意力头(A=12),总参数110M。 BERT-Large:24层Transformer(L=24)、隐藏层1024维(H=1024)、16个自注意力头(A=16),总参数340M。 DistilBERT:更小更快的BERT变体,参数量约为BERT的一半,但性能接近。 RoBERTa:改进版BERT,去除了NSP任务,并采用更大数据量进行训练,提高了性能。 BERT的应用 BERT可以应用于多种NLP任务,包括: 文本分类(如垃圾邮件检测、情感分析) 命名实体识别(NER)(如人名、地名、组织识别) 阅读理解(QA)(如SQuAD问答) 文本摘要 机器翻译 搜索引擎优化(SEO)(Google已将BERT用于搜索算法) BERT的影响 推动NLP进入预训练时代:BERT的成功引发了NLP领域的“预训练+微调”范式(如GPT、T5、XLNet等)。 提升搜索引擎性能:Google 在搜索引擎中使用BERT,提高查询理解能力。 加速AI技术发展:BERT的开源推动了自然语言处理技术在学术界和工业界的广泛应用。 总结 BERT是Transformer架构的双向预训练模型,通过MLM和NSP任务学习通用语言知识,在NLP领域取得巨大突破。它的成功奠定了现代大模型预训练+微调的范式,被广泛用于搜索、问答、文本分类等任务。
2 个月前
模型微调(Fine-tuning)与模型蒸馏(Knowledge Distillation)的比较 1. 定义与核心思想 模型微调 在预训练模型的基础上,通过目标任务的数据调整模型参数(通常仅调整部分层或全网络),使其适应新任务。例如,将ImageNet预训练的ResNet用于医学图像分类时,微调全连接层。 模型蒸馏 将大型教师模型(Teacher)的知识迁移到更小的学生模型(Student),使学生模仿教师的输出或中间特征。核心是通过软化输出(如带温度的Softmax)或特征对齐传递知识,实现模型压缩或性能提升。 2. 共同点 迁移学习:均利用已有模型的知识,避免从头训练。 依赖预训练模型:微调依赖预训练权重初始化,蒸馏依赖教师模型的输出作为监督信号。 提升目标性能:两者均旨在提升模型在目标任务上的表现。 3. 核心差异 -- 4. 优缺点对比 模型微调 ✅ 优点: 简单直接,快速提升目标任务性能 保留预训练模型的表征能力 ❌ 缺点: 模型大小与计算成本不变 小数据任务易过拟合 模型蒸馏 ✅ 优点: 生成轻量级模型,降低推理成本 软标签提供类别间相似性信息 ❌ 缺点: 依赖高质量教师模型 知识迁移设计复杂 5. 应用场景 模型微调: 目标任务与预训练任务相似(如不同领域的图像分类) 数据量中等,需快速适配新任务 模型蒸馏: 资源受限的部署场景(移动端、边缘设备) 利用教师模型提升小模型性能 6. 协同使用 微调教师模型:在目标任务上微调大型模型(如BERT) 蒸馏到学生模型:将知识迁移到轻量学生模型(如TinyBERT) 👉 兼顾性能与效率,适用于工业级部署 7. 总结 选择微调:保持原结构 + 数据充足 选择蒸馏:压缩模型 + 降低计算成本 联合使用:先微调教师,再蒸馏学生
2 个月前
Neocortex Neocortex,又称新皮质,是哺乳动物大脑中最外层的一部分,负责高级神经功能。它是大脑皮层的最新进化部分,占据了人类大脑皮层的绝大部分。Neocortex在认知、感知、空间推理、语言和意识等复杂功能中起着关键作用。 结构 Neocortex由六层神经元组成,每层具有不同的细胞类型和连接方式。这些层次从外到内依次为: 分子层(Layer I):主要由神经纤维和少量神经元组成。 外颗粒层(Layer II):包含小颗粒细胞。 外锥体层(Layer III):包含中等大小的锥体细胞。 内颗粒层(Layer IV):接收来自丘脑的感觉输入。 内锥体层(Layer V):包含大锥体细胞,投射到皮层下结构。 多形层(Layer VI):包含多种细胞类型,投射回丘脑。 功能 Neocortex负责多种高级功能,包括: 感知:处理来自视觉、听觉、触觉等感官的信息。 运动控制:规划和执行复杂的运动。 语言:涉及语言的产生和理解。 记忆:短期和长期记忆的形成与检索。 决策:评估选项并做出决策。 意识:自我意识和环境意识的形成。 进化 Neocortex在哺乳动物中最为发达,尤其在灵长类和人类中。其进化与复杂社会行为、工具使用和语言能力的发展密切相关。人类Neocortex的扩展被认为是智力和文化发展的基础。 相关疾病 Neocortex的损伤或功能障碍与多种神经精神疾病有关,如: 阿尔茨海默病:记忆和认知功能衰退。 癫痫:异常电活动导致癫痫发作。 精神分裂症:思维、情感和行为障碍。 研究 Neocortex的研究涉及神经科学、心理学、人工智能等多个领域。理解其结构和功能有助于开发治疗神经疾病的新方法,并推动人工智能和机器学习的发展。 Neocortex作为大脑的高级处理中心,其复杂性和功能多样性使其成为现代神经科学研究的重要焦点。
2 个月前
Mermaid 格式 Mermaid 是一种基于文本的图表生成工具,允许用户通过简单的代码语法快速创建多种类型的图表(如流程图、序列图、甘特图等)。其核心目标是将图表设计与文本化编程结合,实现高效的可视化文档编写。 核心功能 特性 说明 文本驱动 使用纯文本描述图表结构,无需图形界面操作。 多图表支持 流程图(Flowchart)、序列图(Sequence Diagram)、甘特图(Gantt)、类图(Class Diagram)、状态图(State Diagram)、饼图(Pie Chart)等。 跨平台兼容 可在支持 Markdown 的平台(如 GitHub、GitLab、VS Code)中直接渲染。 版本控制友好 图表代码可随文档一起存储于版本控制系统(如 Git),便于协作和修改。 动态交互 部分工具支持通过修改代码实时更新图表。 语法结构 1. 流程图(Flowchart) graph TD A[开始] --> B{条件判断} B -->|是| C[执行操作1] B -->|否| D[执行操作2] C --> E[结束] D --> E 方向定义:graph TD(从上到下)、graph LR(从左到右)。 节点类型: 方框节点:A[文本] 菱形条件节点:B{文本} 圆形节点:C(文本) 连接线:-->(实线箭头)、---(无箭头线)、-.->(虚线箭头)。 2. 序列图(Sequence Diagram) sequenceDiagram Alice->>Bob: 请求数据 Bob-->>Alice: 返回数据 3. 甘特图(Gantt) gantt title 项目计划 section 阶段A 任务1 :a1, 2023-10-01, 30d 任务2 :after a1, 20d 应用场景 软件开发:绘制系统架构图、API调用流程。 项目管理:创建甘特图跟踪任务进度。 技术文档:在Markdown文件中嵌入动态图表。 教育培训:制作教学流程图或交互式演示。 优点与局限 优点 局限 1. 学习成本低,语法简洁易用。 复杂图表(如三维布局)支持有限。 2. 可嵌入代码库,便于协作维护。 自定义样式需额外配置。 3. 实时渲染,修改即时生效。 部分高级功能依赖特定渲染环境。 工具与生态 编辑器支持: VS Code(插件:Mermaid Preview) JetBrains IDE(插件:Mermaid.js) 在线工具: Mermaid Live Editor GitLab/GitHub Markdown 开源库: 基于JavaScript开发,支持自定义扩展(GitHub仓库)。 通过 Mermaid,用户可以将复杂的图表设计转化为可维护的文本代码,显著提升技术文档的编写效率和协作性。
3 个月前
Claude MCP Server是基于Model Context Protocol(MCP)协议为Claude模型搭建的服务器。以下是具体介绍: 协议基础 MCP是由Anthropic推出的一种开放标准协议,旨在为大语言模型(如Claude)与各种数据源和工具之间提供一种通用、标准化的交互方式,就像一个“万能接口”,可连接本地文件系统、数据库、网络服务等多种数据源。 服务器功能 资源访问与整合:Claude MCP Server充当了Claude模型与外部资源之间的桥梁,使Claude能够访问和整合本地及远程的各种数据和服务,如文件的读写操作、数据库的查询与更新、网络搜索、与代码托管平台的交互等。 功能扩展:通过MCP服务器,可以为Claude添加各种自定义功能和工具,如在Claude中集成图像生成功能、实现对特定网站的自动化操作、进行数据可视化等。 工作流程 当用户向Claude提出请求时,Claude客户端会与MCP服务器进行通信,MCP服务器将用户的请求转换为对相应数据源或工具的操作指令,获取所需的数据或执行相应的任务,然后将结果返回给Claude客户端,Claude再根据这些结果生成回答并呈现给用户。 应用场景 代码开发与管理:Claude可直接连接GitHub等代码托管平台,实现代码的自动编写、仓库创建、推送代码、创建issue、创建分支和PR等一系列开发流程。 数据分析与可视化:接入本地或云端数据库,自动生成SQL查询语句,提取数据并进行可视化,如生成交互式趋势图和投资组合表现分析等。 网络搜索与信息整合:连接网络搜索服务,Claude可直接获取互联网上的实时信息,并进行总结和提炼,同时还可以与本地数据结合,生成更全面和准确的回答。
3 个月前
图形数据库(Graph DB)是一种专门用于存储和处理图形结构数据的数据库。
7 个月前
自然语言处理(Natural Language Processing,NLP)算法是一类用于处理和分析人类自然语言的计算机算法。
8 个月前
React 是一个用于构建用户界面的 JavaScript 库,由 Facebook 开源。
8 个月前
Apache HTTP 服务器,通常简称为 Apache,是 Apache 软件基金会的一个开放源代码的网页服务器软件。
8 个月前
API(Application Programming Interface ),应用程序编程接口,是一组定义了软件组件之间交互的规则和协议。