以下是使用一些AI工具创建网站的具体案例:
假设您想要创建一个电商网站,为客户提供智能客服服务。
1. 选择一个适合电商的模板,然后通过拖放功能添加页面元素,如产品展示区、购物车、用户登录/注册等。
2. 利用 Wix 的应用市场,集成一个 AI 聊天机器人应用。例如,您可以选择类似于 Tidio 这样的聊天机器人应用,并按照其设置向导进行配置。
3. 训练聊天机器人,使其熟悉您的产品信息、常见问题和售后政策等。
4. 将聊天机器人嵌入到网站的适当位置,如网站右下角,方便客户随时咨询。
假如您想创建一个博客网站,自动生成文章。
1. 注册并登录 illa Cloud 平台。
2. 从模板中选择一个适合博客的布局。
3. 使用拖放功能添加文章列表、分类目录、搜索框等元素。
4. 利用 illa 的 AI 代理功能,设置文章生成的规则和主题。例如,您可以指定生成关于科技、旅游或美食等主题的文章。
5. 配置文章的格式和风格,如字体、颜色、段落间距等。
6. 发布网站,让 AI 开始自动生成和更新文章。
假设您要为一家小型创业公司创建营销网站。
1. 访问 Mixo 网站,输入公司的基本信息,如业务类型、品牌名称、核心价值等。
2. 让 Mixo 的 AI 根据您提供的信息生成网站的初始布局和内容。
3. 对生成的内容进行个性化修改,如调整文案的表达方式、更换图片等。
4. 通过拖放功能添加案例展示、客户评价、联系表单等元素。
5. 利用 Mixo 的 AI 功能优化网站的 SEO 元素,如标题、关键词等,以提高网站在搜索引擎中的排名。
需要注意的是,虽然这些工具提供了便利,但在创建 AI 网站时,仍需要对内容和功能进行仔细的规划和调整,以确保网站能够满足您的业务需求和用户体验。

1 个月前
AI图片生成集成指南:从API到SDK的完整实现路径 在腾讯EdgeOne Pages模版详情页面点击“Deploy”按钮,填写必要的API密钥,点击“开始部署”——短短几分钟内,一个完整的AI图片生成应用就这样上线了。 随着人工智能技术的快速发展,AI图片生成功能已成为现代应用中不可或缺的一部分。无论是内容创作、产品设计还是营销素材制作,AI图片生成技术都能提供高效、创新的解决方案。 对于开发者而言,如何将这项能力快速、安全地集成到自己的应用中,成为了一个值得深入探讨的课题。 01 理解两种集成路径 原生API调用和AI SDK封装调用是当前将AI图片生成能力集成到应用中的两种主要技术路径,每种路径都有其独特的优势和应用场景。 原生API调用提供了精细控制和高度灵活性,开发者可以直接与底层API交互,定制化程度高。AI SDK则通过统一接口简化了开发流程,实现了多厂商模型的轻松切换。 以EdgeOne Pages为例,这两种集成方式都有对应的模版:ai-image-generator-starter用于原生接口调用,而ai-sdk-image-generator-starter则适用于AI SDK封装调用。 在开始集成之前,开发者需要根据自身需求选择合适的技术路径。对于追求控制和定制化的项目,原生API调用是更好的选择;而对于希望快速上线并支持多种模型的项目,AI SDK封装调用则更为合适。 02 快速入门:环境准备与部署 要实现AI图片生成功能,首先需要申请API Key。主流AI图片生成提供商的API Key获取地址包括: Hugging Face:huggingface.co/settings/tokens OpenAI:platform.openai.com/api-keys Replicate:replicate.com/account/api-tokens Fal:fal.ai/dashboard/keys Nebius:nebius.com/console 部署过程简单直观。以ai-sdk-image-generator-starter模版为例,在模版详情页面点击“Deploy”按钮,系统将跳转到EdgeOne Pages控制台。 在部署界面,开发者需要配置环境变量,这些配置项对应不同AI图片生成服务的API Key。不同模版会呈现不同的配置项列表,但必须确保至少有一个API Key配置正确且可用。 完成配置后点击“start deployment”按钮,项目就会开始自动部署。部署成功后,GitHub帐户下会生成一个与模版相同的项目,开发者可以通过git clone命令将其下载到本地进行进一步的开发和定制。 03 原生API调用详解 原生API调用方式让开发者能够精细控制每一个请求细节。在这一模式下,图片生成的基本流程是:前端发送生图参数到边缘函数,边缘函数调用AI模型API,最后将生成的图片返回给前端显示。 在前端部分,用户需要配置可用的AI模型列表。以src/pages/index.tsx文件中的核心代码为例: const res = await fetch("/v1/generate", { method: "POST", headers: { "Content-Type": "application/json", }, body: JSON.stringify({ image: `${prompt} (${modelInfo.name} style)`, platform: platform.id, model: modelInfo.value || selectedModel, }), }); 边缘函数的处理逻辑位于functions/v1/generate/index.js文件中。函数首先接收前端传递的参数,然后检查对应平台的环境变量是否配置正确。 const validateToken = (platform) => { const tokens = { nebius: env.NEBIUS_TOKEN, huggingface: env.HF_TOKEN, replicate: env.REPLICATE_TOKEN, openai: env.OPENAI_API_KEY, fal: env.FAL_KEY, }; if (!tokens[platform]) { throw new Error( `${platform} API token is not configured. Please check your environment variables.` ); } }; 这种通过env访问环境变量的方式,有效防止了API密钥在代码中明文暴露,提高了应用的安全性。敏感信息存储在环境变量中,而非硬编码在源代码里。 环境变量检查完成后,函数会直接请求对应平台的图片生成模型API。以HuggingFace为例,其标准API请求核心代码如下: const response = await PROVIDERS.fetch(url, { headers: { Authorization: `Bearer ${token}`, "Content-Type": "application/json", }, method: "POST", body: JSON.stringify(data), }); EdgeOne Pages的AI图片生成模版已经支持了多种主流模型,包括HuggingFace、OpenAI、Replicate、Fal、Nebius等。生成图片后,函数将结果返回给前端,模版项目内已经内置了图片显示的完整逻辑。 04 AI SDK封装调用解析 与原生API调用方式相比,AI SDK封装调用通过统一接口简化了开发流程。它允许开发者使用相同的代码结构调用不同厂商的AI图片模型,显著提高了开发效率和多模型切换的便利性。 在AI SDK方式下,前端通过/api/generate接口发送请求: const response = await fetch(apiUrl, { method: "POST", headers: { "Content-Type": "application/json", }, body: JSON.stringify({ prompt, model, size, }), }); 这里需要注意的是,size参数需要提前设置,因为不同的模型支持的尺寸列表可能不一致。 例如,DALL-E 3支持“1024x1024”、“1024x1792”、“1792x1024”等尺寸,而Stable Diffusion可能支持“512x512”、“768x768”等不同规格。 EdgeOne Pages的AI SDK图片生成模版已经梳理了AI SDK支持模型对应的尺寸列表,相关配置位于components/modelSizeMapping.ts文件中。开发者可以直接使用这些预配置的尺寸映射,无需手动处理不同模型的尺寸兼容性问题。 AI SDK同样避免了密钥泄漏风险。函数在调用AI图片模型时,使用AI SDK暴露的experimental_generateImage对象来统一生成图片内容,密钥的获取由experimental_generateImage在内部自动处理。 const imageResult = await experimental_generateImage({ model: imageModel, prompt: prompt, size: size, // Use frontend-provided size }); 调用experimental_generateImage后,只需要读取函数返回的标准格式内容即可: const imageUrl = `data:image/png;base64,${imageResult.image.base64}`; return new Response( JSON.stringify({ images: [ { url: imageUrl, base64: imageResult.image.base64, }, ], }) ); 05 本地调试与持续集成 开发者在下载项目到本地后,可能需要进行本地开发、调试或预览。为了简化本地环境配置,EdgeOne提供了专门的CLI工具。 使用EdgeOne CLI需要先安装并登录,具体步骤可以参考EdgeOne CLI的文档介绍。在安装和登录后,开发者可以在本地项目下执行edgeone pages link命令,将项目与EdgeOne Pages控制台的项目进行关联。 执行该命令后,系统会提示输入EdgeOne Pages的项目名,即上文部署的模版项目的项目名称。输入项目名后,EdgeOne Pages控制台的环境变量会自动同步到本地。 关联成功后,本地项目根目录下会生成.env文件,包含所有已配置的环境变量列表。关联后,可以执行edgeone pages dev命令来进行本地部署,部署后可以在localhost:8088进行访问。 对于代码的自定义修改,开发者可以直接通过git提交项目到GitHub。EdgeOne Pages会检测GitHub的提交记录并自动进行重新部署,实现真正的持续集成与持续部署。 部署完成后,控制台会显示部署状态和预览界面,开发者可以立即验证功能是否正常工作。 AI图片生成集成后的应用界面,简洁直观。模板提供了开箱即用的用户界面,用户可以直接输入提示词、选择模型和调整参数,生成结果会即时显示在右侧区域。 在本地测试过程中,如果对生成效果或性能有特定要求,开发者可以灵活切换不同的AI模型提供商。不同的模型在风格表现、细节处理等方面各有特色,有些专注于写实风格,有些擅长艺术创作,实际测试是找到最适合项目的关键一步。 ( 文章来源:Tencent Cloud )

1 个月前
打造一个在线平台——Bauhaus.Design,让用户通过简单文本提示(prompt)即可生成符合包豪斯风格的视觉设计作品。

5 个月前
大语言模型(Qwen3)正成为数字化创业与品牌建设的核心赋能者。在用户利用 zhaneu.com 等域名构建面向欧洲品牌的中国推广平台过程中,Qwen3 能发挥智能中枢的关键作用。以下内容就是Qwen3为用户输出的网站建设方案: 🌍 域名定位: zhaneu.com —— 欧洲品牌进入中国的“数字展厅” 不只是推广,更是信任搭建、文化翻译、消费转化的一站式平台。 🎯 一、核心理念(品牌使命) “把欧洲的好,讲给中国人听。” 许多优质的欧洲中小企业(德国工艺、法国设计、意大利美学、北欧可持续理念)在中国“酒香也怕巷子深”。 而中国消费者渴望高品质、有故事、环保健康的产品,但信息不对称、购买链路复杂。 zhaneu 就是桥梁: 帮欧洲品牌“说中文” 帮中国用户“看懂欧洲” 🏗️ 二、网站形态建议(可组合发展) ✅ 1. 欧洲品牌精选平台(B2C 内容电商) 类似“小红书 + 爱范儿 + 得物”的欧洲版 特色功能: 品牌故事栏目:深度图文/视频介绍欧洲小众品牌(如丹麦极简家具、奥地利有机奶粉) 产品测评:真实试用报告,破除“洋品牌迷信” 文化解读:为什么德国人不用空调?法国妈妈怎么育儿? 一键跳转购买:链接至天猫国际、京东国际、品牌官网或小程序商城 短链赋能:每个推荐都用 zhaneu.com/brand-name 作为专属入口,便于追踪效果 📌 示例: zhaneu.com/lamarzocco → 意大利专业咖啡机品牌介绍页 zhaneu.com/babycare → 欧洲母婴好物合集 zhaneu.com/sustainability → 北欧环保生活方式指南 ✅ 2. 欧洲企业出海服务(B2B 商业模式) 为欧洲中小企业提供“进中国”的全套数字营销服务 服务内容: 服务 说明 📝 品牌本地化文案 将品牌故事翻译成“中国人听得懂的话” 🎥 内容创作 拍短视频、写小红书笔记、做知乎问答 🔗 短链+追踪系统 提供 zhaneu.com/xxx 作为中国市场的官方引流入口,带数据看板 📊 效果分析报告 告诉客户:多少人点击?来自哪个平台?转化如何? 🤝 渠道对接 推荐入驻天猫国际、抖音跨境、小红书品牌合作 收费模式:年费制(如 €2999/年)或按项目收费 ✅ 3. “展欧”数字展厅(Virtual Showcase) 用轻量级网页为每个欧洲品牌打造“中国专属官网” 每个品牌拥有: 一个子页面:zhaneu.com/brand/swisswatch 多语言切换(中/英) 视频介绍 + 产品图集 + 用户评价 中国合规信息(如进口许可、质检报告) 购买入口(跳转天猫/京东/小程序) 类似 Apple 为中国市场做的“本地化官网”,但面向中小品牌 ✅ 4. 文化内容平台(自媒体+社区) 用内容建立信任,用信任带动消费 内容方向: 栏目 示例标题 🏰 欧洲制造密码 《德国刀具为什么能用30年?》 🍷 生活美学 《法国主妇的厨房,为什么没有油烟机?》 🌿 可持续生活 《瑞典人怎么做到垃圾零填埋?》 👶 育儿教育 《丹麦幼儿园,没有“起跑线”》 🛍️ 好物推荐 《这5个欧洲小众品牌,让我戒掉了淘宝》 发布在网站 + 同步分发到:小红书、B站、微信公众号、知乎 🎯 三、目标用户画像 用户类型 需求 🇨🇳 中国中产家庭 为孩子买安全奶粉、为家选环保建材 🛍️ 品质消费者 拒绝山寨,追求设计感与耐用性 📱 内容创作者 需要欧洲品牌合作资源 🏢 欧洲中小企业 想进中国但不懂本地规则 🧑💼 跨境电商从业者 寻找差异化货源 💰 四、商业模式(如何赚钱?) 模式 说明 🏢 B2B 服务费 为欧洲品牌提供“进中国”全套数字服务(年费制) 🛒 CPS 分佣 用户通过你的链接购买,获得电商平台佣金 📣 内容营销合作 品牌付费定制内容(如深度测评、视频拍摄) 🎯 精准广告投放 在自有内容中插入相关品牌广告(需透明标注) 🧩 数据报告销售 发布《欧洲品牌中国白皮书》,卖给咨询公司或政府机构 🔗 五、短链系统的升级用法(品牌+追踪) 你原来的“短链”想法依然极有价值,但可以升级为“品牌信任链”: 使用场景: 欧洲品牌在 Instagram 发帖,写: 👉 “点击了解我们在中国的官方信息:zhaneu.com/alpine-ski” 中国博主推荐:“我用的德国护脊书包,点这里看测评 zhaneu.com/backpack” 微信公众号文章嵌入:zhaneu.com/french-wine-tasting 优势: 链接短、好看、可信(.com 域名 + “展欧”背书) 可追踪点击来源(判断哪个平台效果最好) 可做 A/B 测试(不同标题,相同链接) 🌐 六、品牌合作资源从哪里来? 1. 主动出击 LinkedIn 搜索欧洲中小品牌 CEO/市场负责人 参加欧洲 trade fair(如德国科隆展、巴黎家博会) 联系欧洲商会(德国工商会、法国商务投资署) 2. 被动吸引 建一个英文版页面:zhaneu.com/en 标题:“Want to enter China? We speak Chinese for you.” 在欧洲创业论坛、Indie Hackers 发帖 3. 样板案例 先免费服务 3 家欧洲品牌,做出成功案例 制作《某丹麦灯具品牌,3 个月中国销量增长 200%》的案例报告 📈 七、启动路线图(6个月计划) 时间 目标 第1个月 上线网站 MVP:3 篇深度内容 + 2 个品牌案例 + 短链生成器 第2个月 发布第一个《欧洲好物榜》,同步小红书/B站 第3个月 签下第一个付费欧洲客户(可免费试用1个月) 第4个月 推出“品牌入驻计划”,开放申请 第5个月 接入京东国际/CPS 联盟,开始分佣 第6个月 发布《2025欧洲品牌入华趋势报告》 🎁 八、品牌延展建议 项目 说明 ZhanEU 播客 《展欧对话》:采访欧洲品牌创始人 ZhanEU 会员制 年费会员享“欧洲好物内购价” 线下快闪展 在上海/成都办“欧洲生活节” 微信社群 “展欧式生活圈”分享会 ✅ 总结:zhaneu.com 的终极价值 它不是一个简单的网站,而是一个“文化翻译器” + “商业加速器”。 你用一个短域名,做了一件大事: 帮欧洲品牌跨越“文化鸿沟” 帮中国消费者找到“真正的好东西” 自己成为中欧消费市场之间的关键节点 如果你觉得Qwen3这个智能分析不错的话,不妨你也可以试试让语言模型为你出谋划策,培养AI成为你的商务助理。

7 个月前
美团推出的零代码AI应用开发平台NoCode确实能够实现网站开发,但其适用场景和功能范围有一定的限制,主要面向非技术用户快速搭建简单应用或网页。以下是NoCode的核心能力和实际应用效果分析: 1. NoCode的核心功能 NoCode通过自然语言交互和AI生成技术,支持以下功能: 自然语言编程:用户只需描述需求(如“创建一个餐饮管理后台”),AI会自动生成对应的网页或应用代码。 实时预览与编辑:生成的页面可实时调整,支持局部修改(如更换图片、调整布局)。 一键部署:完成开发后,可一键发布并生成可分享的链接。 模块化组件:支持常见的前端框架(如React),可生成HTML、CSS、JavaScript代码。 2. 实际应用案例 NoCode已被用于生成多种类型的网站和工具: 商家运营页面:如酒店预订、餐饮管理后台。 数据可视化看板:运营人员可快速搭建数据分析仪表盘。 小游戏:如泡泡龙、五子棋等互动游戏。 个人工具:如就医导航助手、学习工具等。 3. 适用人群与局限性 适用人群: 非技术用户(如产品经理、运营人员、中小商户)可快速搭建原型或简单应用。 开发者可借助NoCode加速前端开发,或使用其Dev Mode进行深度定制。 局限性: 复杂度有限:适合中小型静态页面或简单交互应用,不适合高并发、复杂业务逻辑的系统。 数据依赖:部分功能(如地图导航、数据库操作)需依赖美团提供的API或外部数据源。 生成代码可控性:AI生成的代码可能不够优化,专业开发者仍需手动调整。 4. 与专业开发的对比 维度 NoCode 传统开发 技术门槛 零代码,自然语言交互 需编程技能 开发速度 分钟级生成 天/周级 灵活性 受限,依赖AI生成 完全自定义 适用场景 简单网页、工具、原型 复杂系统、高性能应用 5. 未来发展方向 NoCode计划进一步优化: 更强大的Dev Mode:面向开发者提供更专业的IDE环境。 多模态支持:未来可能支持移动端UI、3D场景等。 生态扩展:接入美团商家服务(如支付、会员系统)。 结论 NoCode能真正实现简单网站开发,尤其适合无编程经验的用户快速搭建原型或轻量级应用。但对于复杂、高性能的网站,仍需专业开发介入。其核心价值在于降低开发门槛,让更多人能快速验证创意,而非完全替代传统开发。

11 个月前
搭建商业内容库的核心目标是收集、整理和优化可供推荐的商业文章,以支持你的关键词推荐变现模式。以下是具体的实施步骤: 1. 商业内容库的结构设计 你的内容库需要有一个清晰的结构,以便AI能够高效检索和推荐。可以采用数据库+搜索引擎索引的方式,常见技术方案如下: 数据库:MySQL / PostgreSQL / MongoDB(用于存储文章数据) 全文搜索引擎:Elasticsearch / Meilisearch(提高检索速度和匹配准确性) AI推荐系统:基于NLP和深度学习(BERT/GPT等) 表结构示例(SQL) CREATE TABLE commercial_articles ( id SERIAL PRIMARY KEY, title TEXT NOT NULL, content TEXT NOT NULL, keywords TEXT[], -- 关键词 category TEXT, -- 行业分类 company_name TEXT, -- 文章来源 created_at TIMESTAMP DEFAULT NOW() ); 这样,你可以根据关键词、行业分类和发布时间快速检索文章。 2. 采集和整理商业内容 (1)内容来源 你的商业内容库可以包含以下类型的文章: 企业官网和行业博客(公开的技术文章、白皮书) AI生成的行业分析(你可以用GPT生成企业相关的商业文章) 合作企业付费推广(企业可以提交文章,AI根据关键词推荐) 开放数据源(如政府、行业协会发布的市场报告) (2)自动化采集 使用爬虫(Scrapy)+ NLP预处理,将有价值的内容自动存入数据库。例如: 定期爬取特定行业网站的商业文章(例如制造、AI、物流等) 使用NLP提取核心关键词,以便文章能够被AI模型推荐 内容去重和质量筛选,确保高质量文章进入推荐系统 3. 商业文章的AI优化 为了让AI更精准地推荐商业文章,可以对文章进行预处理: 自动提取关键词(TF-IDF、BERT Embeddings) 生成摘要(GPT自动生成200字的文章概要) 添加行业分类标签(制造业、科技、物流等) 示例(Python代码) from transformers import pipeline summarizer = pipeline("summarization") article = """Hier steht ein langer kommerzieller Artikel über industrielle KI und ihre Auswirkungen auf die Fertigung...""" summary = summarizer(article, max_length=200, min_length=100, do_sample=False) print(summary) 这样可以让AI生成简短摘要,并在搜索结果中显示,提高用户点击率。 4. 商业内容推荐系统 你的AI问答网站需要一个智能推荐系统,可以结合: 基于内容的推荐(Content-Based Filtering) 例如:用户搜索“工业AI”,推荐与此相关的文章 基于协同过滤的推荐(Collaborative Filtering) 例如:如果多个用户搜索“展览制作”,AI发现他们也对“展台设计”感兴趣,推荐相关内容 结合深度学习的推荐(NLP+BERT) 通过语义匹配,让搜索词和商业文章的匹配更加智能 5. 商业化落地 (1)关键词触发付费内容 例如,用户搜索“物流自动化”,AI推荐某家物流公司的文章,并标注“推荐内容” 你可以采用按点击收费(CPC)或按展示收费(CPM)的模式 (2)会员订阅模式 对于高价值商业内容(如市场分析报告),可以设置付费阅读 例如:“完整报告需订阅VIP会员” (3)B2B企业推广 允许企业付费提交文章,你的AI系统根据用户搜索行为自动推荐给目标用户 下一步建议 ✅ 第一步(短期): 设计数据库并开始采集商业文章 训练关键词匹配模型,提高推荐精度 ✅ 第二步(中期): AI优化文章摘要、分类和匹配规则 建立商业文章+AI问答的智能推荐系统 ✅ 第三步(长期): 逐步拓展B2B合作,允许企业付费推广商业文章 结合用户数据,优化个性化推荐算法

11 个月前
我们在开发网站的时候,往往有想克隆别人网站的想法。那么在技术上怎么才能实现呢? ⚠️ 重要提示 确认目标网站的版权和合法性:如果你没有目标网站的授权,直接克隆并使用可能会侵犯版权或违反法律。 如果只是想模仿其功能或界面,建议自行开发类似的网站,而不是直接复制。 如果你拥有授权,可以使用以下方法进行克隆。 🔹 方法 1:使用 HTTrack 下载整个网站 HTTrack 是一个网站克隆工具,可用于离线浏览: 下载安装 HTTrack(Windows/macOS/Linux 都支持)。 创建新项目 并输入目标网站 URL地址。 启动克隆,HTTrack 会下载 HTML、CSS、JS、图片等资源。 本地查看和编辑,然后上传到自己的服务器。 缺点: 只能克隆静态页面(HTML、CSS、JS),无法克隆后端功能(如 API、数据库、登录系统等)。 如果目标网站有反爬虫策略,可能无法完整下载。 🔹 方法 2:手动分析 & 重新开发 如果你想复制网站的功能,而不仅仅是外观,建议进行以下操作: 1. 分析网站前端 使用 Chrome 开发者工具(F12) 查看 HTML 结构、CSS 样式和 JavaScript 逻辑。 使用 Postman 或浏览器 Network 面板 分析 API 接口调用方式(如果适用)。 复制或编写类似的 HTML/CSS/JS 代码,实现前端界面。 2. 分析网站后端 如果网站有 API 接口、数据库等后端功能,需要: 观察 API 调用(GET/POST 请求)以了解数据交互方式。 搭建类似的后端(Node.js、Python、PHP、Go 等),并使用数据库(MySQL、MongoDB 等)。 如果网站使用的是 OpenAI API,你可以在 [OpenAI 官方网站] 申请 API Key,然后在你的项目中集成 ChatGPT 或 DALL·E 相关功能。 3. 部署你的网站 本地开发:使用 HTML + CSS + JavaScript + 后端框架(如 Flask、Express、Django)。 云端部署:选择服务器(AWS、阿里云、Vultr、腾讯云等)并部署网站。 🔹 方法 3:使用 Web Scraping(仅用于数据获取) 如果你只想获取网页上的文本数据,可以使用 Python + BeautifulSoup / Selenium 进行爬取: import requests from bs4 import BeautifulSoup url = "http://openai.cha-tai.cn/" response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') # 提取页面文本 text = soup.get_text() print(text) 注意: 如果网站有反爬虫机制,可能需要使用 Selenium 或 Scrapy 进行爬取。 只能获取静态数据,无法克隆网站的功能。 🔹 结论 如果你只是想获取网站的内容,HTTrack 或 Web Scraping 可能够用。 但如果你想克隆网站的功能,建议分析前端和后端结构,并自行开发。

1 年前
通过结合 VS Code 和 Cline,用户可以轻松实现无代码开发网站。

1 年前
阿里云宣布完成其域名产品服务的AI化改造,推出首个基于通义大模型的域名AI应用,并上线了包括“.ai”在内的40多个全新热门域名后缀。
Minimax(海螺AI)已由大模型名Minimax替换原海螺AI。现海螺AI为Minimax视频生成产品名。
海螺AI