
LLaMA-Factory Online是与开源项目LLaMA-Factory官方合作的零代码在线大模型微调平台,提供可视化全流程操作,覆盖数据准备、模型微调、评估对齐到部署推理,支持超百种主流模型与多种高效微调方法,适配企业与个人低门槛定制需求。以下从核心能力、操作流程、关键优势等方面详细介绍:
| 功能模块 | 具体内容 |
|---|---|
| 模型支持 | 覆盖LLaMA、Mistral、Qwen、ChatGLM、Gemma等100+主流模型,含多模态模型(如LLaVA) |
| 微调方式 | 全参数微调、LoRA、QLoRA(2-8bit量化)、冻结微调,适配不同算力与精度需求 |
| 训练方法 | 支持SFT、DPO、PPO、KTO等,集成RLHF/DPO对齐优化,适配指令微调与偏好对齐场景 |
| 数据处理 | 内置数据清洗、标注增强工具,支持私有数据上传与公开数据集选择,保障数据安全与灵活定制 |
| 训练加速 | 集成FlashAttention-2、GaLore等技术,提升训练效率,降低显存占用 |
| 监控评估 | 支持TensorBoard/WandB/LlamaBoard实时监控,自动化多维度评估,快速验证模型效果 |
| 部署推理 | 对接vLLM高性能推理,提供API与在线交互界面,支持模型权重下载与直接调用 |
| 维度 | LLaMA-Factory Online | 本地LLaMA-Factory |
|---|---|---|
| 操作门槛 | 零代码Web UI,无需环境配置 | 需本地部署环境,熟悉CLI/代码 |
| 算力需求 | 云端弹性提供,按量计费 | 依赖本地GPU,显存≥16GB(推荐) |
| 功能完整性 | 覆盖全流程,集成监控与部署 | 需手动配置工具链,部署流程复杂 |
| 数据安全 | 支持私有数据加密,平台保障 | 本地可控,需自行配置安全策略 |
| 成本 | 按算力/时长计费,灵活可控 | 硬件采购与维护成本高,适合长期大规模训练 |
LLaMA-Factory Online通过零代码可视化操作与全流程工具链,为大模型定制提供高效、低门槛的云端解决方案,尤其适合快速验证业务场景、缺乏本地算力或技术团队的用户。建议先使用免费额度完成小样本测试,再根据需求扩展算力与训练规模,同时关注数据合规与模型评估,确保定制效果符合预期。
免责声明:本网站仅提供网址导航服务,对链接内容不负任何责任或担保。
14 小时前
命令优先,而非图形界面。

25 天前
这正是当前 AI 视频生成领域最前沿的突破方向。你提出的这个问题,本质上是在问如何让 AI 从“画皮”进阶到“画骨”——即不仅画面好看,运动逻辑也要符合现实世界的物理法则。 结合最新的技术进展(如 2025 年的相关研究),要让 AI 生成符合真实规律的视频,我们可以通过以下几种“高级语言描述法”来与模型沟通: 1. 使用“力提示”技术:像导演一样指挥物理力 🎬 这是谷歌 DeepMind 等团队提出的一种非常直观的方法。你不需要懂复杂的物理公式,只需要在提示词中描述“力”的存在。 描述力的方向与强度: 你可以直接告诉 AI 视频中存在某种力。例如,不只是写“旗帜飘动”,而是写“旗帜在强风中剧烈飘动”或“气球被轻轻向上吹起”。 区分全局力与局部力: 全局力(风、重力): 影响整个画面。例如:“Global wind force blowing from left to right”(从左到右的全局风力)。 局部力(碰撞、推力): 影响特定点。例如:“A ball rolling after being kicked”(球被踢后滚动)。 效果: AI 模型(如 CogVideoX 结合特定模块)能理解这些力的矢量场,从而生成符合动力学的运动,比如轻的物体被吹得更远,重的物体移动缓慢。 2. 调用“思维链”与物理常识:让 LLM 当质检员 🧠 有时候直接描述很难精准,我们可以借助大型语言模型(LLM)作为“中间人”来审核物理逻辑。这种方法(如匹兹堡大学的 PhyT2V)利用 LLM 的推理能力。 分步描述(Chain-of-Thought): 你可以在提示词中要求 AI “思考过程”。例如,不只是生成“水倒入杯子”,而是引导它:“首先,水从壶嘴流出,形成抛物线;然后,水撞击杯底,产生涟漪;最后,水位上升,流速减慢。” 明确物理规则: 在提示词中直接嵌入物理常识。例如:“根据重力加速度,球下落的速度应该越来越快”或“流体具有粘性,流动时会有拉丝效果”。 回溯修正: 如果第一版视频不符合物理规律(比如球浮在空中),你可以通过反馈指令让系统进行“回溯推理”,识别出视频与物理规则的语义不匹配,并自动修正提示词重新生成。 3. 参数化控制:像物理老师一样给定数值 📏 如果你需要极其精确的物理运动(例如做科学实验模拟或电影特效),可以使用类似普渡大学 NewtonGen 框架的思路,直接给定物理参数。 设定初始状态: 在语言描述中包含具体的物理量。 位置与速度: “一个小球从坐标 (0, 10) 以初速度 5m/s 水平抛出”。 角度与旋转: “一个陀螺以角速度 10rad/s 旋转”。 质量与材质: “一个轻质的泡沫块”与“一个沉重的铁球”在相同力作用下的反应是不同的。 指定运动类型: 明确指出是“匀速直线运动”、“抛物线运动”还是“圆周运动”。AI 会根据这些语义,调用内置的“神经物理引擎”来计算轨迹,确保视频中的物体运动轨迹符合牛顿定律。 4. 结合物理引擎的混合描述:虚实结合 🧩 更高级的方法是让语言描述直接驱动物理模拟器(如 Blender, Genesis),然后将结果渲染成视频。 描述物理属性: 在提示词中指定物体的密度、弹性系数、摩擦力等。 事件驱动描述: 描述物体间的相互作用。例如:“一个刚性的小球撞击一个柔软的布料,布料发生形变并包裹住小球”。 通用物理引擎: 像 Genesis 这样的新模型,允许你用自然语言描述复杂的物理场景(如“一滴水滑落”),它能直接生成符合流体动力学的模拟数据,而不仅仅是看起来像视频的图像帧。 📝 总结:如何写出“物理级”提示词? 为了更直观地掌握这种描述方式,这里总结了一个对比表: 一句话总结: 要用语言描述物理运动,关键在于将“视觉结果”转化为“物理过程”。多用描述力(风、推力)、属性(重力、粘性)、参数(速度、角度)的词汇,甚至直接告诉 AI 要遵循某种物理规律,这样生成的视频才会有真实的“重量感”和“真实感”。

28 天前
利用大语言模型(LLM)构建虚拟的“世界模型”(World Models),以此作为 KI 智能体(AI Agents)积累经验和训练的场所。 核心概念:让 LLM 成为 AI 的“模拟练习场” 目前,开发能在现实世界执行复杂任务的 AI 智能体(如机器人、自动化软件助手)面临一个巨大挑战:获取实际操作经验的成本极高且充满风险。 如果让机器人在物理世界中通过“试错”来学习,不仅效率低下,还可能造成硬件损毁。 研究人员提出的新思路是:利用已经掌握了海量人类知识的大语言模型(LLM),由它们通过文字或代码生成一个模拟的“世界模型”。 1. 什么是“世界模型”? 世界模型是一种模拟器,它能预测特定行为可能产生的结果。 传统方式: 需要开发者手动编写复杂的代码来定义物理法则和环境规则。 LLM 驱动方式: 预训练的大模型(如 GPT-4 或 Claude)已经具备了关于世界运行逻辑的知识(例如:知道“推倒杯子水会洒”)。研究人员可以利用 LLM 自动生成这些模拟环境的逻辑。 2. 研究的具体内容 来自上海交通大学、微软研究院、普林斯顿大学和爱丁堡大学的国际研究团队对此进行了深入研究。他们测试了 LLM 在不同环境下充当模拟器的能力: 家庭模拟(Household Simulations): 模拟洗碗、整理房间等日常任务。 电子商务网站(E-Commerce): 模拟购物行为、库存管理等逻辑。 3. 关键发现: 强结构化环境表现更佳: 在规则清晰、逻辑严密的场景(如简单的文本游戏或特定流程)中,LLM 驱动的模拟效果非常好。 开放世界的局限性: 对于像社交媒体或复杂的购物网站这类高度开放的环境,LLM 仍需要更多的训练数据和更大的模型参数才能实现高质量的模拟。 真实观察的修正: 实验显示,如果在 LLM 模拟器中加入少量来自现实世界的真实观察数据,模拟的质量会显著提升。 对 AI 行业的意义 加速 AI 智能体进化: 这种方法让 AI 智能体可以在几秒钟内完成数千次的虚拟实验,极大加快了学习速度。 降低训练门槛: 开发者不再需要搭建昂贵的物理实验室,只需要调用 LLM 接口就能创建一个“训练场”。 2026 年的趋势: 这预示着 2026 年及以后,“自主智能体”将成为 AI 发展的核心,而这种“基于模拟的学习”将是通往通用人工智能(AGI)的关键一步。 总结 该研究证明,LLM 不仅仅是聊天机器人,它们可以演变成复杂的“数字世界创造者”。在这个虚拟世界里,新一代的 AI 智能体可以安全、低成本地反复磨练技能,最终再将学到的能力应用到现实生活和工作中。 ( 根据海外媒体编译 )

1 个月前
Nova 2是亚马逊于2025年12月在re:Invent 全球大会上推出的新一代基础模型家族,共包含4款模型,均需通过Amazon Bedrock平台使用,兼顾行业领先的性价比与多场景适配性,具体介绍如下 : 1. Nova 2 Lite: 主打快速、高性价比的日常推理任务,可处理文本、图像和视频输入并生成文本。能通过调节“思考”深度平衡智能、速度与成本,适合客服聊天机器人、文档处理等场景。在基准测试中,它对标Claude Haiku 4.5、GPT - 5 Mini等模型,多数项目表现持平或更优。 2. Nova 2 Pro(预览版): 是该家族中智能度最高的推理模型,可处理文本、图像、视频和语音输入并生成文本。适配代理编码、长期规划等复杂任务,还能作为“教师模型”向小型模型传递能力,在与Claude Sonnet 4.5、Gemini 2.5 Pro等主流模型的对比中,多项基准测试表现出色。 3. Nova 2 Sonic: 专注端到端语音交互的模型,能实现类人化实时对话。它支持多语言与丰富音色,拥有100万token上下文窗口,可支撑长时交互,还能与Amazon Connect等语音服务、对话框架无缝集成,适配客服、AI助手等语音场景。 4. Nova 2 Omni: 业内首款统一多模态推理与生成模型,可处理文本、图像等多种输入,还能同时生成文本和图像。它能一次性处理海量多格式内容,比如数百页文档、数小时音频等,适合营销素材一站式制作等需要整合多类信息的场景。 这4款模型均具备100万token上下文窗口,且内置网页查找和代码执行能力,能保障回答的时效性与实用性 。

2 个月前
LoRA(Low-Rank Adaptation)是一种对大模型进行“轻量级微调”的技术。

2 个月前
Gemini 3 标志着AI模型从“增量优化”向“范式转变”的重大跃进。

3 个月前
Alice AI:俄罗斯搜索引擎Yandex推出的人工智能助手 从日常任务到城市生活,Yandex的Alice AI正在重新定义人与机器的互动方式。 在2025年10月28日的“Alice,what‘s new?”大会上,俄罗斯科技巨头Yandex推出了全新升级的Alice AI——一个强大的通用神经网络,能够帮助用户在聊天中解决几乎任何任务。 这项技术代表了过去几十年聊天机器人从简单模式匹配到智能交互的演进历程。Alice AI不同于传统的规则驱动聊天机器人,它基于最先进的生成模型,不仅能理解复杂请求,还能主动协助用户完成从信息查询到实际行动的全流程任务。 01 从ELIZA到Alice AI,技术革命的演进历程 聊天机器人的发展始于20世纪60年代,当时麻省理工学院教授魏岑鲍姆发明了世界上第一个聊天机器人ELIZA,它通过模式匹配和替换方法来模拟对话。 受到ELIZA的启发,理查德·华莱士博士在1995年开发了ALICE系统(Artificial Linguistic Internet Computer Entity)。 ALICE采用启发式模式匹配的对话策略,并支持基于人工智能标记语言(AIML)的规则定义。 这一系统在人工智能领域获得了高度认可,在2000年、2001年和2004年三次获得洛伯纳奖(Loebner Prize)。 然而,传统的ALICE系统仍然依赖于预设的模板和规则,需要大量人力进行设计和制定。 Yandex的Alice AI则代表了技术演进的新阶段,它不再局限于规则驱动,而是基于大规模训练的神经网络,具备真正的理解和生成能力。 02 多模态架构,Alice AI的技术内核 Alice AI由三个核心模型共同驱动,构成了其多功能的技术基础。 Alice AI LLM负责处理语言相关的任务,包括回答问题、生成文本和逻辑推理。 Alice AI ART专注于视觉内容生成,能够根据文本描述创建图像和视频内容。 Alice AI VLM作为视觉语言模型,专精于图像分析、理解和与图像相关的任务解决。 这一模型家族将继续扩展,例如图像编辑模型即将推出。 Alice AI支持多种交互方式,包括文本输入、语音对话和实时摄像头交互。 用户可以通过手机摄像头获取实时视觉分析,使Alice AI能够成为识别物体、解释场景的随身助手。 03 四大应用场景,从聊天到实际行动 Alice AI的能力体现在多个实际应用场景中,使其成为用户日常生活的有用伙伴。 智能对话与文件处理:Alice AI可以处理各种类型的文件(DOC、DOCX、PDF、TXT),从中提取关键信息并生成清晰的报告。 它能够进行复杂问题的推理分析,提供深思熟虑的结论而不仅仅是快速回答。 视觉识别与创作:通过图像识别技术,Alice AI可以读取照片中的文本(如收据),识别物体,并提供即时视觉数据分析。 用户也可以请求生成图像或动画照片,用于社交媒体内容、标志设计或生日卡片制作。 浏览器集成与网页交互:Alice AI将很快深度集成到Yandex Browser中,能够利用活动标签页中的信息(无论是文本文档还是视频)来回答问题。 例如,用户可以直接询问一个500页的PDF报告中是否包含6月的销售数据,或者询问关于黑洞视频中讲师提到的内容。 城市服务与AI代理:Alice AI即将帮助城市居民预订出租车、安排送货、订购食物或杂货。 当用户提出请求时,AI代理会分析需求,确定能够处理任务的服务,并连接相应的代理——出租车、食品、 Lavka或送货。 04 “我的记忆”,前瞻性功能重新定义个人助手 Alice AI即将推出的“我的记忆”(My Memory)功能,将更进一步改变用户与AI的互动方式。 这一功能让Alice AI能够将用户随意思考的想法和想法转化为待办事项列表、购物清单、笔记和提醒,所有这些都直接呈现在聊天界面中。 用户可以在行动中向Alice AI口述任务,它会记住所有内容,进行组织,并在适当时机提醒重要事项。 Yandex还宣布了搭载Alice AI的可穿戴AI设备,使用户无需智能手机即可随时记录想法和想法。 这些设备将专注于“我的记忆”服务,让用户能够随时随地通过语音与Alice AI交互。 05 对比传统聊天机器人,Alice AI的突破 与传统聊天机器人相比,Alice AI在多个方面实现了技术突破。 传统聊天机器人如ALICE主要依赖于启发式模式匹配和AIML规则,需要大量人工编写的模板。 而Alice AI基于大规模训练的神经网络,能够理解更复杂的查询并生成更自然的回应。 传统系统多数仅限于文本对话,而Alice AI提供多模态交互,包括文本、图像、视频和语音。 最显著的进步在于,传统聊天机器人主要用于信息查询或简单任务,而Alice AI能够通过AI代理执行端到端的实际任务,从信息收集到最终结果。 从简单的模式匹配到复杂的多模态交互,从回答问题到执行任务——Alice AI代表了聊天机器人技术的又一次飞跃。 随着AI代理和“我的记忆”功能的推出,Alice AI正逐步从一个对话工具演变为一个能够理解、预测并满足用户需求的真正个人助手。 技术专家指出,未来的聊天机器人将不再局限于回答问题的角色,而是成为人类与数字设备交互的重要桥梁。 Alice AI正是这一趋势的领先代表,它正在重新定义我们与技术共存的方式。

6 个月前
大模型的范式(paradigm)是指支撑其设计、训练和应用的核心方法论或框架,反映了其处理问题的基本模式。这一概念可以从多个维度理解,以下是关键要点: 1. 技术范式 自监督学习 大模型的核心训练方式,通过海量无标注数据(如文本、图像)进行预训练,利用掩码语言建模(如BERT)、自回归生成(如GPT)等任务学习通用表示。 规模化(Scaling Laws) 遵循"规模效应":模型参数量、数据量和算力同步扩大时,性能显著提升(如Chinchilla定律)。 Transformer架构 基于自注意力机制(Self-Attention)的模型结构,支持并行计算和长程依赖建模,成为大模型的基础骨架。 2. 功能范式 预训练+微调(Pretrain-Finetune) 先在通用数据上预训练,再针对下游任务微调(如分类、生成)。例如,BERT通过附加任务层适配不同场景。 提示学习(Prompt Learning) 通过设计自然语言提示(Prompt)激发模型潜能,减少微调需求(如GPT-3的few-shot learning)。 多模态统一建模 将文本、图像、视频等映射到统一语义空间(如CLIP、Flamingo),实现跨模态理解与生成。 3. 应用范式 生成式AI(Generative AI) 大模型的核心能力转向生成内容(文本、代码、图像等),如ChatGPT的对话生成、Stable Diffusion的图像合成。 AI即服务(AIaaS) 通过API或开放平台提供模型能力(如OpenAI API),降低技术使用门槛。 智能体(Agent)架构 大模型作为"大脑",结合工具调用(Tool Use)、记忆和规划,实现复杂任务自动化(如AutoGPT)。 4. 生态范式 开源与闭源并存 开源模型(如LLaMA、Stable Diffusion)推动社区创新,闭源模型(如GPT-4)侧重商业化。 数据飞轮效应 用户反馈数据持续优化模型,形成闭环(如ChatGPT基于人类反馈的强化学习RLHF)。 垂直领域适配 通用大模型通过领域适配(如医学、法律)释放专业价值(如Med-PaLM)。 5. 挑战与演进方向 效率问题:模型压缩(如量化、蒸馏)、稀疏化(如Mixture of Experts)。 对齐(Alignment):确保模型行为符合人类价值观(如RLHF技术)。 新架构探索:超越Transformer的潜在方案(如RWKV、Mamba等状态空间模型)。 总结 大模型的范式本质是通过规模化预训练获得通用能力,再通过灵活适配解决多样任务,其发展正从单一语言模型转向多模态、交互式、智能体化的综合系统。这一范式正在重塑AI研发和应用的基本逻辑。
Minimax(海螺AI)已由大模型名Minimax替换原海螺AI。现海螺AI为Minimax视频生成产品名。
海螺AI