在一档访谈节目中,Clawdbot创始人彼得·斯坦伯格表达了AI代理时代软件开发根本性转变的观点。就他的观点整理如下:
斯坦伯格认为,AI时代需要彻底改变软件设计的哲学,核心是 “为模型设计,而非为人类设计” 。开发者应构建模型易于理解和调用的工具,而不是遵循传统以人为中心的逻辑。
· 设计范式:采用 “Agent驱动的设计” ,即按照AI代理的思维方式构建系统。例如,如果模型习惯调用“--log”参数,开发者就应直接构建具备此参数的功能,这能让整个系统运作更顺畅。
· 技术选择:斯坦伯格明确主张 “CLI First,Not GUI” (命令行优先,而非图形界面)。他认为图形用户界面(GUI)扩展性差,而命令行工具(CLI)具备天然优势。AI代理天生理解Unix系统,可以轻松调用成百上千个小而专的命令行程序,只需知道名称即可通过帮助菜单学习使用,这种特性与AI代理的工作方式完美契合。
新的交互与开发范式,预计将重塑软件行业的现有格局。
· 传统应用面临淘汰:斯坦伯格预言,随着高度个性化AI代理的普及,大量功能单一的应用程序将面临淘汰。许多应用将退化为背后的API接口,甚至随着AI能力提升,未来连API也可能不再必要。
· 例如:在未来,用户可能不再需要“MyFitnessPal”这类专门的健康应用。只需拍摄食物照片,AI代理就能识别场景(如在麦当劳),结合用户背景信息自动调整健身计划。
· 打破“围墙花园”:AI代理正在无意中拆除科技巨头建立的封闭生态系统。尽管各大公司刻意打造平台壁垒,但AI代理能够灵活地跨平台整合服务,实现原本难以协调的功能。
· 例如:斯坦伯格曾尝试集成WhatsApp,但官方API对企业用户限制重重。他最终通过模拟协议等方式实现集成,这展示了AI代理有能力绕过不合理的平台限制。
这些观点源自斯坦伯格在开发Clawdbot(后更名为Moltbot,现名OpenClaw)过程中的实践。该项目是一个开源的个人AI助手,核心特点包括:
· 本地运行与主动智能:在用户本地设备(如Mac mini)上运行,可通过WhatsApp等常用通讯软件交互。它不仅被动响应,还能基于记忆主动提醒用户。
· 强大的执行能力:拥有系统访问权限,可执行终端命令、编写脚本、操作文件等,真正“做事”。
· 爆发式增长与风险:项目在短期内获得超过10万GitHub星标,引发了现象级关注。其强大的能力同时带来了显著的安全风险,因为高系统权限一旦被恶意利用,可能导致数据泄露或财产损失。
斯坦伯格的观点描绘了一个根本性转变的未来:软件开发的核心从满足人类交互,转向服务于AI代理的高效理解与调用;随之而来的,将是应用形态的简化和跨平台壁垒的消融。

14 小时前
命令优先,而非图形界面。

3 天前
原名 Clawdbot 的灵感来自 Claude 模型加载时出现的那个“Clawd”小龙虾/爪子吉祥物。

3 天前
奥地利最知名的独立开发者 Steinberger 是全球最热的“一人公司”/“vibe-coding”代表人物之一。

25 天前
这正是当前 AI 视频生成领域最前沿的突破方向。你提出的这个问题,本质上是在问如何让 AI 从“画皮”进阶到“画骨”——即不仅画面好看,运动逻辑也要符合现实世界的物理法则。 结合最新的技术进展(如 2025 年的相关研究),要让 AI 生成符合真实规律的视频,我们可以通过以下几种“高级语言描述法”来与模型沟通: 1. 使用“力提示”技术:像导演一样指挥物理力 🎬 这是谷歌 DeepMind 等团队提出的一种非常直观的方法。你不需要懂复杂的物理公式,只需要在提示词中描述“力”的存在。 描述力的方向与强度: 你可以直接告诉 AI 视频中存在某种力。例如,不只是写“旗帜飘动”,而是写“旗帜在强风中剧烈飘动”或“气球被轻轻向上吹起”。 区分全局力与局部力: 全局力(风、重力): 影响整个画面。例如:“Global wind force blowing from left to right”(从左到右的全局风力)。 局部力(碰撞、推力): 影响特定点。例如:“A ball rolling after being kicked”(球被踢后滚动)。 效果: AI 模型(如 CogVideoX 结合特定模块)能理解这些力的矢量场,从而生成符合动力学的运动,比如轻的物体被吹得更远,重的物体移动缓慢。 2. 调用“思维链”与物理常识:让 LLM 当质检员 🧠 有时候直接描述很难精准,我们可以借助大型语言模型(LLM)作为“中间人”来审核物理逻辑。这种方法(如匹兹堡大学的 PhyT2V)利用 LLM 的推理能力。 分步描述(Chain-of-Thought): 你可以在提示词中要求 AI “思考过程”。例如,不只是生成“水倒入杯子”,而是引导它:“首先,水从壶嘴流出,形成抛物线;然后,水撞击杯底,产生涟漪;最后,水位上升,流速减慢。” 明确物理规则: 在提示词中直接嵌入物理常识。例如:“根据重力加速度,球下落的速度应该越来越快”或“流体具有粘性,流动时会有拉丝效果”。 回溯修正: 如果第一版视频不符合物理规律(比如球浮在空中),你可以通过反馈指令让系统进行“回溯推理”,识别出视频与物理规则的语义不匹配,并自动修正提示词重新生成。 3. 参数化控制:像物理老师一样给定数值 📏 如果你需要极其精确的物理运动(例如做科学实验模拟或电影特效),可以使用类似普渡大学 NewtonGen 框架的思路,直接给定物理参数。 设定初始状态: 在语言描述中包含具体的物理量。 位置与速度: “一个小球从坐标 (0, 10) 以初速度 5m/s 水平抛出”。 角度与旋转: “一个陀螺以角速度 10rad/s 旋转”。 质量与材质: “一个轻质的泡沫块”与“一个沉重的铁球”在相同力作用下的反应是不同的。 指定运动类型: 明确指出是“匀速直线运动”、“抛物线运动”还是“圆周运动”。AI 会根据这些语义,调用内置的“神经物理引擎”来计算轨迹,确保视频中的物体运动轨迹符合牛顿定律。 4. 结合物理引擎的混合描述:虚实结合 🧩 更高级的方法是让语言描述直接驱动物理模拟器(如 Blender, Genesis),然后将结果渲染成视频。 描述物理属性: 在提示词中指定物体的密度、弹性系数、摩擦力等。 事件驱动描述: 描述物体间的相互作用。例如:“一个刚性的小球撞击一个柔软的布料,布料发生形变并包裹住小球”。 通用物理引擎: 像 Genesis 这样的新模型,允许你用自然语言描述复杂的物理场景(如“一滴水滑落”),它能直接生成符合流体动力学的模拟数据,而不仅仅是看起来像视频的图像帧。 📝 总结:如何写出“物理级”提示词? 为了更直观地掌握这种描述方式,这里总结了一个对比表: 一句话总结: 要用语言描述物理运动,关键在于将“视觉结果”转化为“物理过程”。多用描述力(风、推力)、属性(重力、粘性)、参数(速度、角度)的词汇,甚至直接告诉 AI 要遵循某种物理规律,这样生成的视频才会有真实的“重量感”和“真实感”。

28 天前
利用大语言模型(LLM)构建虚拟的“世界模型”(World Models),以此作为 KI 智能体(AI Agents)积累经验和训练的场所。 核心概念:让 LLM 成为 AI 的“模拟练习场” 目前,开发能在现实世界执行复杂任务的 AI 智能体(如机器人、自动化软件助手)面临一个巨大挑战:获取实际操作经验的成本极高且充满风险。 如果让机器人在物理世界中通过“试错”来学习,不仅效率低下,还可能造成硬件损毁。 研究人员提出的新思路是:利用已经掌握了海量人类知识的大语言模型(LLM),由它们通过文字或代码生成一个模拟的“世界模型”。 1. 什么是“世界模型”? 世界模型是一种模拟器,它能预测特定行为可能产生的结果。 传统方式: 需要开发者手动编写复杂的代码来定义物理法则和环境规则。 LLM 驱动方式: 预训练的大模型(如 GPT-4 或 Claude)已经具备了关于世界运行逻辑的知识(例如:知道“推倒杯子水会洒”)。研究人员可以利用 LLM 自动生成这些模拟环境的逻辑。 2. 研究的具体内容 来自上海交通大学、微软研究院、普林斯顿大学和爱丁堡大学的国际研究团队对此进行了深入研究。他们测试了 LLM 在不同环境下充当模拟器的能力: 家庭模拟(Household Simulations): 模拟洗碗、整理房间等日常任务。 电子商务网站(E-Commerce): 模拟购物行为、库存管理等逻辑。 3. 关键发现: 强结构化环境表现更佳: 在规则清晰、逻辑严密的场景(如简单的文本游戏或特定流程)中,LLM 驱动的模拟效果非常好。 开放世界的局限性: 对于像社交媒体或复杂的购物网站这类高度开放的环境,LLM 仍需要更多的训练数据和更大的模型参数才能实现高质量的模拟。 真实观察的修正: 实验显示,如果在 LLM 模拟器中加入少量来自现实世界的真实观察数据,模拟的质量会显著提升。 对 AI 行业的意义 加速 AI 智能体进化: 这种方法让 AI 智能体可以在几秒钟内完成数千次的虚拟实验,极大加快了学习速度。 降低训练门槛: 开发者不再需要搭建昂贵的物理实验室,只需要调用 LLM 接口就能创建一个“训练场”。 2026 年的趋势: 这预示着 2026 年及以后,“自主智能体”将成为 AI 发展的核心,而这种“基于模拟的学习”将是通往通用人工智能(AGI)的关键一步。 总结 该研究证明,LLM 不仅仅是聊天机器人,它们可以演变成复杂的“数字世界创造者”。在这个虚拟世界里,新一代的 AI 智能体可以安全、低成本地反复磨练技能,最终再将学到的能力应用到现实生活和工作中。 ( 根据海外媒体编译 )

1 个月前
Nova 2是亚马逊于2025年12月在re:Invent 全球大会上推出的新一代基础模型家族,共包含4款模型,均需通过Amazon Bedrock平台使用,兼顾行业领先的性价比与多场景适配性,具体介绍如下 : 1. Nova 2 Lite: 主打快速、高性价比的日常推理任务,可处理文本、图像和视频输入并生成文本。能通过调节“思考”深度平衡智能、速度与成本,适合客服聊天机器人、文档处理等场景。在基准测试中,它对标Claude Haiku 4.5、GPT - 5 Mini等模型,多数项目表现持平或更优。 2. Nova 2 Pro(预览版): 是该家族中智能度最高的推理模型,可处理文本、图像、视频和语音输入并生成文本。适配代理编码、长期规划等复杂任务,还能作为“教师模型”向小型模型传递能力,在与Claude Sonnet 4.5、Gemini 2.5 Pro等主流模型的对比中,多项基准测试表现出色。 3. Nova 2 Sonic: 专注端到端语音交互的模型,能实现类人化实时对话。它支持多语言与丰富音色,拥有100万token上下文窗口,可支撑长时交互,还能与Amazon Connect等语音服务、对话框架无缝集成,适配客服、AI助手等语音场景。 4. Nova 2 Omni: 业内首款统一多模态推理与生成模型,可处理文本、图像等多种输入,还能同时生成文本和图像。它能一次性处理海量多格式内容,比如数百页文档、数小时音频等,适合营销素材一站式制作等需要整合多类信息的场景。 这4款模型均具备100万token上下文窗口,且内置网页查找和代码执行能力,能保障回答的时效性与实用性 。

2 个月前
LoRA(Low-Rank Adaptation)是一种对大模型进行“轻量级微调”的技术。

2 个月前
Gemini 3 标志着AI模型从“增量优化”向“范式转变”的重大跃进。
Minimax(海螺AI)已由大模型名Minimax替换原海螺AI。现海螺AI为Minimax视频生成产品名。
海螺AI