信息是人类进步的核心。这就是为什么我们26多年来一直专注于组织世界信息并使其易于访问和有用的使命。这就是为什么我们继续推动人工智能的前沿,在每个输入中组织这些信息,并使其可以通过任何输出访问,以便它对您真正有用。
那是我们的愿景 我们在去年12月推出了Gemini 1.0.第一个构建为原生多模态的模型,Gemini 1.0和1.5推动了多模态和长上下文的巨大进步,以理解跨文本,视频,图像,音频和代码的信息,并处理更多信息。
现在,数百万开发人员正在使用Gemini进行开发。它帮助我们重新构想所有产品-包括拥有20亿用户的所有7款产品-并创建新产品。 NotebookLM 是一个很好的例子,说明了多模态和长上下文可以为人们带来什么,以及为什么它受到如此多的人的喜爱。
在过去的一年里,我们一直在投资开发更多的代理模型,这意味着他们可以更多地了解你周围的世界,提前考虑多个步骤,并在你的监督下代表你采取行动。
今天,我们很高兴推出为这个新的代理时代打造的下一个时代的模型:介绍我们迄今为止最强大的模型Gemini 2.0。随着多模态(如原生图像和音频输出)以及原生工具的使用,它将使我们能够构建新的AI代理,使我们更接近我们对通用助手的愿景。
今天,我们正在将2.0交到开发人员和值得信赖的测试人员手中。我们正在迅速将其融入我们的产品,以Gemini和Search为首。从今天开始,我们的Gemini 2.0 Flash实验模型将提供给所有Gemini用户。我们还推出了一项新功能,称为深度研究,它使用高级推理和长上下文功能作为研究助手,代表您探索复杂的主题并编写报告。它现在在Gemini Advanced中可用。
没有任何产品比搜索更多地受到AI的影响。我们的人工智能概述现在覆盖了10亿人,使他们能够提出全新类型的问题-很快成为我们有史以来最受欢迎的搜索功能之一。作为下一步,我们将Gemini 2.0的高级推理能力引入AI概述,以解决更复杂的主题和多步骤问题,包括高级数学公式,多模态查询和编码。我们本周开始进行有限的测试,明年初将更广泛地推广。明年,我们将继续将AI概述带给更多国家和语言。
2.0的进步是由我们在AI创新方面的差异化全栈方法长达十年的投资支撑的。它建立在定制硬件上,例如我们的第六代TPU Trillium。TPU为Gemini 2.0训练和推理提供了100%的支持。今天Trillium General Availability开放给用户,用户可以使用它。
如果说Gemini 1.0是为了组织和理解信息,那么Gemini 2.0则是为了让信息变得更有用。我迫不及待地想看看下一个时代会带来什么。
1 个月前
谷歌大模型与人脑语言处理机制研究由谷歌研究院与普林斯顿大学、纽约大学等合作开展。3 月上旬,谷歌的研究成果表明大模型竟意外对应人脑语言处理机制。他们将真实对话中的人脑活动与语音到文本 LLM 的内部嵌入进行比较,发现两者在线性相关关系上表现显著,如语言理解顺序(语音到词义)、生成顺序(计划、发音、听到自己声音)以及上下文预测单词等方面都有惊人的一致性 研究方法:将真实对话中的人脑活动与语音到文本LLM的内部嵌入进行比较。使用皮层电图记录参与者在开放式真实对话时语音生成和理解过程中的神经信号,同时从Whisper中提取低级声学、中级语音和上下文单词嵌入,开发编码模型将这些嵌入词线性映射到大脑活动上。 具体发现 语言理解与生成顺序:在语言理解过程中,首先是语音嵌入预测沿颞上回(STG)的语音区域的皮层活动,几百毫秒后,语言嵌入预测布罗卡区(位于额下回;IFG)的皮层活动。在语言生成过程中,顺序则相反,先由语言嵌入预测布罗卡区的皮层活动,几百毫秒后,语音嵌入预测运动皮层(MC)的神经活动,最后,在说话者发音后,语音嵌入预测STG听觉区域的神经活动。这反映了神经处理的顺序,即先在语言区计划说什么,然后在运动区决定如何发音,最后在感知语音区监测说了什么。 神经活动与嵌入的关系:对于听到或说出的每个单词,从语音到文本模型中提取语音嵌入和基于单词的语言嵌入,通过估计线性变换,可以根据这些嵌入预测每次对话中每个单词的大脑神经信号。全脑分析的定量结果显示,在语音生成和语音理解过程中,不同脑区的神经活动与语音嵌入和语言嵌入的峰值存在特定的先后顺序和对应关系。 “软层次”概念:尽管大模型在并行层中处理单词,人类大脑以串行方式处理它们,但反映了类似的统计规律。大脑中较低级别的声学处理和较高级别的语义处理部分重叠,即存在“软层次”概念。例如,像IFG这样的语言区域不仅处理单词级别的语义和句法信息,也捕捉较低级别的听觉特征;而像STG这样的低阶语音区域在优先处理声学和音素的同时,也能捕捉单词级别的信息。 以往相关研究成果 2022年发表在《自然神经科学》上的论文显示,听者大脑的语言区域会尝试在下一个单词说出之前对其进行预测,且在单词发音前对预测的信心会改变在单词发音后的惊讶程度(预测误差),证明了自回归语言模型与人脑共有的起始前预测、起始后惊讶和基于嵌入的上下文表征等基本计算原理。 发表在《自然通讯》的论文发现,大模型的嵌入空间几何图形所捕捉到的自然语言中单词之间的关系,与大脑在语言区诱导的表征(即大脑嵌入)的几何图形一致。 后续研究还发现,虽然跨层非线性变换在LLMs和人脑语言区中相似,但实现方式不同。Transformer架构可同时处理成百上千个单词,而人脑语言区似乎是按顺序、逐字、循环和时间来分析语言。 总之,该研究表明,语音到文本模型嵌入为理解自然对话过程中语言处理的神经基础提供了一个连贯的框架,尽管大模型与人脑在底层神经回路架构上存在明显不同,但在处理自然语言时有着一些相似的计算原则。
1 个月前
根据《Nature》最新发表的研究,非营利研究机构METR发现了一项被称为“智能体摩尔定律”的规律,即AI智能体(Agent)在完成长期任务方面的能力每7个月翻一番。这一发现揭示了AI在任务完成时间跨度上的指数级增长趋势,并提出了“50%-任务完成时间跨度”这一新指标来衡量AI的能力变化。 核心发现 能力翻倍周期:自2019年以来,AI智能体完成任务的时间跨度每7个月翻一番。这意味着,如果2019年AI完成某项任务所需时间对应人类需要10分钟,那么7个月后,这一时间将缩短至20分钟。 加速趋势:2024年,AI能力的增长速度进一步加快,部分最新模型的能力每3个月翻一番。 未来预测:按照这一趋势,预计5年后(即2030年左右),AI将能够完成许多当前需要人类花费一个月时间才能完成的任务。 研究方法 METR团队通过以下步骤验证了这一规律: 任务设计:设计了170个多样化任务,涵盖软件工程、机器学习、网络安全等领域,并测量人类专家完成这些任务所需的时间,建立“人类基准线”。 指标引入:提出了“50%-任务完成时间跨度”指标,即AI在50%成功率下完成任务的时间长度。这一指标对数据分布的微小变化具有鲁棒性。 模型评估:评估了2019年至2025年间发布的13个前沿AI模型(如GPT系列、Sonnet 3.7等),通过逻辑回归分析计算每个模型的时间跨度。 验证与外部实验 为了验证结果的可靠性,研究团队进行了多项外部实验,包括: 回溯预测:使用2023-2025年数据验证趋势一致性。 任务混乱度分析:评估任务复杂性对AI性能的影响,发现AI在复杂任务上的提升速度与简单任务相似。 基准测试:在SWE-bench等数据集上验证了类似的指数增长趋势。 意义与影响 技术进步:这一发现标志着AI在执行长期任务能力上的显著进步,可能推动AI在软件开发、研究等领域的广泛应用。 劳动力市场影响:AI能力的快速提升可能对劳动力市场产生深远影响,未来或替代部分人类工作,尤其是重复性和耗时任务。 社会挑战:研究提醒社会各界需关注AI技术进步带来的就业和经济挑战,并提前制定应对策略。 未来展望 METR团队预测,按照当前趋势,AI可能在2028年11月达到一个月的任务时间跨度,保守估计则在2031年2月实现。尽管研究存在任务局限性和未来不确定性,但团队确信AI能力每年有1~4倍的增长趋势。 这项研究为AI技术的发展提供了新的量化标准,同时也引发了对AI未来应用和影响的深入思考。
1 个月前
阿里推出新夸克,集成AI对话、深度搜索、深度执行等功能,标志着其从搜索引擎向AI Agent的转型。 新夸克接入通义系列模型,用户规模超2亿,DAU达3430万,位居AI应用榜首。
2 个月前
BERT(Bidirectional Encoder Representations from Transformers)是由Google于2018年发布的一种预训练语言模型,基于Transformer架构,用于自然语言处理(NLP)任务。它的双向(Bidirectional)上下文理解能力使其在文本理解、问答系统、文本分类等任务中表现卓越。 BERT的核心特点 1. 双向上下文理解 传统语言模型(如GPT)通常是单向的(从左到右或从右到左)。 BERT采用Masked Language Model(MLM,掩码语言模型),即在训练过程中随机遮挡部分词语,并让模型根据上下文预测这些被遮挡的词,从而实现双向理解。 2. 预训练+微调(Pre-training & Fine-tuning) 预训练(Pre-training):在海量无标注文本数据(如维基百科、BooksCorpus)上进行训练,使BERT学会通用的语言知识。 微调(Fine-tuning):针对具体任务(如情感分析、问答系统、命名实体识别)进行轻量级训练,只需少量数据,即可获得良好效果。 3. 基于Transformer架构 BERT使用多层Transformer编码器,通过自注意力(Self-Attention)机制高效建模文本中的远程依赖关系。 Transformer结构相比RNN和LSTM,更适合并行计算,处理长文本能力更强。 BERT的两大核心任务 Masked Language Model(MLM,掩码语言模型) 在训练时,随机遮挡输入文本中的15%单词,让模型根据上下文预测这些词。 这种方法使BERT学习到更深层次的语言表示能力。 Next Sentence Prediction(NSP,下一句预测) 让模型判断两个句子是否是相邻句: IsNext(相关):句子A和B是原始文本中相连的句子。 NotNext(无关):句子B是随机选择的,与A无关。 这一任务有助于提高BERT在问答、阅读理解等任务中的能力。 BERT的不同版本 BERT-Base:12层Transformer(L=12)、隐藏层768维(H=768)、12个自注意力头(A=12),总参数110M。 BERT-Large:24层Transformer(L=24)、隐藏层1024维(H=1024)、16个自注意力头(A=16),总参数340M。 DistilBERT:更小更快的BERT变体,参数量约为BERT的一半,但性能接近。 RoBERTa:改进版BERT,去除了NSP任务,并采用更大数据量进行训练,提高了性能。 BERT的应用 BERT可以应用于多种NLP任务,包括: 文本分类(如垃圾邮件检测、情感分析) 命名实体识别(NER)(如人名、地名、组织识别) 阅读理解(QA)(如SQuAD问答) 文本摘要 机器翻译 搜索引擎优化(SEO)(Google已将BERT用于搜索算法) BERT的影响 推动NLP进入预训练时代:BERT的成功引发了NLP领域的“预训练+微调”范式(如GPT、T5、XLNet等)。 提升搜索引擎性能:Google 在搜索引擎中使用BERT,提高查询理解能力。 加速AI技术发展:BERT的开源推动了自然语言处理技术在学术界和工业界的广泛应用。 总结 BERT是Transformer架构的双向预训练模型,通过MLM和NSP任务学习通用语言知识,在NLP领域取得巨大突破。它的成功奠定了现代大模型预训练+微调的范式,被广泛用于搜索、问答、文本分类等任务。
3 个月前
腾讯两大智能体平台:腾讯元器和 AppAgent。
3 个月前
Anthropic 于2024年12月发布的文章《Building effective agents》详细探讨了如何构建高效的大语言模型(LLM)代理系统。Anthropic 与数十个团队合作构建了跨行业的大语言模型(LLM) agent。最成功的实现往往不是使用复杂框架或专门库,而是采用简单、可组合的模式。本文分享Anthropic 的经验和实用建议: 1. 代理(Agents)的定义与分类 代理的定义: 代理可以被定义为完全自主的系统,能够在较长时间内独立运行,使用各种工具完成复杂任务。 也可以指遵循预定义工作流程的系统,这些系统通过预定义的代码路径协调LLM和工具。 工作流(Workflows)与代理(Agents)的区别: 工作流:通过预定义的代码路径编排LLM和工具,适合任务明确、步骤固定的场景。 代理:LLM动态指导自身的流程和工具使用,保持对任务完成方式的控制,适合需要灵活性和模型驱动决策的场景。 2. 何时使用代理 适用场景: 当任务复杂且需要灵活性和模型驱动的决策时,代理是更好的选择。 代理适合处理开放性问题,尤其是难以预测步骤或无法硬编码固定路径的任务。 不适用场景: 对于任务明确、步骤固定的场景,工作流提供更高的可预测性和一致性。 对于许多应用,优化单个LLM调用(配合检索和上下文示例)通常已足够。 3. 框架的使用建议 常用框架: LangGraph(LangChain)、Amazon Bedrock的AI Agent框架、Rivet(拖放式GUI工具)、Vellum(复杂工作流构建工具)。 使用建议: 开发者应优先直接使用LLM API,许多模式只需几行代码即可实现。 如果使用框架,需理解底层代码,避免因框架的抽象层增加调试难度和复杂性。 4. 构建模块与工作流模式 基础构建模块:增强型LLM 增强型LLM通过检索、工具使用和记忆等功能扩展能力,能够生成搜索查询、选择工具并保留重要信息。 核心工作流模式: 提示链(Prompt chaining):将任务分解为一系列步骤,每个LLM调用处理前一步的输出。适用于可分解为固定子任务的场景,如生成营销文案并翻译。 路由(Routing):对输入分类并引导至专门的后续任务。适用于复杂任务,如客户服务查询的分类处理。 并行化(Parallelization):将任务拆分为并行子任务或多次运行以获得多样化输出。适用于需要多视角或高置信度结果的场景。 编排者-执行者(Orchestrator-workers):中央LLM动态分解任务并分配给执行者LLM。适用于无法预测子任务的复杂场景,如编程任务。 评估者-优化者(Evaluator-optimizer):一个LLM生成响应,另一个提供评估和反馈。适用于需要迭代优化的任务,如文学翻译或复杂搜索。 5. 代理的实现与应用 代理的工作流程: 代理通过用户指令或交互明确任务,独立规划并执行,必要时向用户寻求反馈。 代理在每个步骤中从环境中获取“基准事实”(如工具调用结果)以评估进展。 适用场景: 编码代理:解决SWE-bench任务,根据任务描述编辑多个文件。 计算机使用代理:Claude通过计算机完成任务,如数据处理或信息检索。 6. 核心原则与总结 核心原则: 简单性:从简单设计开始,逐步增加复杂性。 透明性:明确展示代理的规划步骤。 工具设计:通过完善的文档和测试设计代理-计算机接口(ACI)。 总结: 成功的关键在于构建适合需求的系统,而非最复杂的系统。 框架可帮助快速启动,但在生产环境中应减少抽象层,使用基础组件构建。 7. 附录:代理的实际应用 客户支持:结合聊天机器人界面与工具集成,适用于开放式代理场景。 编码代理:在软件开发中,代理通过自动化测试验证代码解决方案,并迭代优化。 这篇文章为开发者提供了构建高效代理系统的实用指南,强调了简单性、透明性和工具设计的重要性,并通过丰富的案例展示了代理系统的实际应用价值。
3 个月前
AnyChat 和 Gemini Coder 的结合为开发者提供了一种高效、灵活且低成本的 APP 开发方式。
4 个月前
DeepSeek(深度求索)是一家专注于大语言模型(LLM)和相关技术研发的创新型科技公司,成立于2023年7月,由知名量化私募巨头幻方量化创立。DeepSeek的AI产品主要包括以下几类: 语言模型 DeepSeek-LLM:如包含67亿参数的DeepSeek-67b-base模型,基于海量的中英文token数据集训练,可用于多种自然语言处理任务. DeepSeek-Coder:是代码语言模型,如DeepSeek-Coder-v2-instruct在代码特定任务中性能可比肩GPT-4 Turbo,可辅助编程及代码相关的自然语言处理任务. DeepSeek-Math:旨在提升数学推理能力,例如DeepSeek-Math-7b-instruct等模型,可解决数学问题、进行数学相关的文本生成和问答等. DeepSeek-Prover: 主要用于定理证明,通过优化训练和推理过程,为相关领域的研究和应用提供支持. 多模态模型 DeepSeek-VL:是开源的视觉-语言模型,可用于真实世界的视觉和语言理解应用,如视觉问答、图像字幕生成等. 应用平台 乾坤圈(AI Agent智能体平台):基于深擎自研的流程引擎研发,能够基于海量的大模型组件进行极速灵活编排,满足大模型场景快速搭建能力需求,内置了20多个工作流最佳实践、50多项金融领域的特色处理组件以及30多款应用场景,主要应用于金融行业. Janus:是统一的多模态理解和生成模型,可应用于多种需要多模态交互的场景. 内容产品与服务 个性化推荐引擎:如穿云箭,依托智能算法模型,基于用户的浏览行为,实现精准的内容推荐,帮助金融机构了解客户需求. 内容服务平台:如风火轮,整合各大财经资讯和自媒体内容,通过SaaS模式分发给客户,让信息获取及时可靠;白羽扇智能内容处理中心则进一步提高了内容分发的个性化和实时性,对投资标的、财经事件进行动态打标,优化客户体验.
4 个月前
通过与企业系统、API 和数据来源无缝连接,使生成式人工智能应用程序能够自动执行多步任务。
4 个月前
LangChain, Amazon Bedrock, Rivet, Vellum.