杭州作为中国人工智能(AI)研发的重要城市,近年来在AI领域取得了显著成就,尤其是DeepSeek-V3大模型的发布,使其成为全球AI界的焦点。以下从多个角度分析杭州为何能孕育出中国最好的语言大模型,以及其在AI研发上的基因和基础:
杭州在人工智能领域的政策支持力度大,形成了完整的产业生态。杭州市政府出台了多项政策,如《关于加快推进人工智能产业创新发展的实施意见》和《杭州市视觉智能(数字安防)集群培育提升三年行动方案》,旨在推动AI技术的研发和应用。此外,杭州还设立了“中国视谷”“中国数谷”等产业集聚区,重点发展视觉智能、智能物联等领域,为AI企业提供了丰富的应用场景和资源支持。
杭州拥有完善的算力基础设施,为AI大模型的训练提供了重要保障。杭州还通过“算力券”等政策支持企业购买智能算力,进一步降低了AI研发的门槛。不但如此,杭州科技企业还能通过算力优化提升算力。例如,深度求索(DeepSeek)在训练DeepSeek-V3时,仅使用了2048块H800 GPU,训练成本仅为557.6万美元,远低于硅谷巨头的投入。
杭州聚集了众多顶尖高校和科研机构,如浙江大学,其人工智能研究所和脑机智能实验室为AI领域输送了大量人才。深度求索的创始人梁文锋就是浙江大学人工智能专业的毕业生,其团队主要由本土人才组成,展现了杭州在AI人才培养上的深厚基础。此外,杭州还吸引了大量AI领域的年轻人才,形成了以创新为导向的研发文化。
杭州拥有阿里巴巴、海康威视等科技巨头,这些企业在AI技术研发和应用上积累了丰富的经验。例如,阿里云的通义千问大模型和恒生电子的LightGPT都在行业内具有重要影响力。深度求索作为一家初创企业,凭借其创新的架构设计(如混合专家模型MoE和多头潜在注意力机制MLA),在性能和成本上实现了突破,成为全球AI领域的“黑马”。
杭州以其开放包容的城市精神吸引了大量科技企业和人才。从城西科创大走廊到滨江人工智能产业园,杭州形成了“双核集聚、多点布局”的AI产业格局。深度求索的创始人梁文锋强调,公司更注重技术研究和开源创新,而非短期商业化,这种理念在杭州的创新环境中得到了充分支持。
杭州在智慧城市、智慧交通、智慧医疗等领域广泛应用AI技术,为AI模型的研发提供了丰富的应用场景。例如,杭州“城市大脑”在交通管理和民生服务中的应用,推动了AI技术的落地。深度求索的DeepSeek-V3不仅在技术上领先,还通过低成本的API定价策略,满足了市场对高性价比AI解决方案的需求。
杭州之所以能孕育出中国最好的语言大模型,得益于其强大的政策支持、完善的算力基础设施、丰富的人才储备、企业创新能力以及开放包容的创新环境。这些因素共同构成了杭州在AI研发上的独特基因,使其成为中国乃至全球AI领域的重要力量。未来,随着AI技术的进一步发展,杭州有望在更多领域实现突破,推动全球AI生态的繁荣。
20 天前
📢 OpenAI即将发布GPT-4.1,多模态能力再升级! 据多家科技媒体报道,OpenAI计划于下周(2025年4月中旬)推出GPT-4.1,作为GPT-4o的升级版本,进一步强化多模态推理能力,并推出轻量级mini和nano版本。 🔍 关键升级点 更强的多模态处理 GPT-4.1将优化对文本、音频、图像的实时处理能力,提升跨模态交互的流畅度。 相比GPT-4o,新模型在复杂推理任务(如视频理解、语音合成等)上表现更优。 轻量化版本(mini & nano) GPT-4.1 mini 和 nano 将面向不同应用场景,降低计算资源需求,适合移动端或嵌入式设备。 配套新模型(o3 & o4 mini) OpenAI还将推出o3推理模型(满血版)和o4 mini,优化特定任务性能。 部分代码已在ChatGPT网页端被发现,表明发布临近。 ⏳ 发布时间与不确定性 原定下周发布,但OpenAI CEO Sam Altman 曾预警可能因算力限制调整计划。 同期,ChatGPT已升级长期记忆功能,可回顾用户历史对话,提供个性化服务(Plus/Pro用户已开放)。 🌍 行业影响 谷歌(Gemini AI)和微软(Copilot)近期也强化了AI记忆功能,竞争加剧。 GPT-4.1可能进一步巩固OpenAI在多模态AI领域的领先地位,推动商业应用(如智能客服、内容创作等)。 📌 总结:GPT-4.1的发布标志着OpenAI在多模态AI上的又一次突破,但具体性能提升和落地效果仍需观察。我们将持续关注官方更新! (综合自腾讯新闻、The Verge、搜狐等)
1 个月前
谷歌大模型与人脑语言处理机制研究由谷歌研究院与普林斯顿大学、纽约大学等合作开展。3 月上旬,谷歌的研究成果表明大模型竟意外对应人脑语言处理机制。他们将真实对话中的人脑活动与语音到文本 LLM 的内部嵌入进行比较,发现两者在线性相关关系上表现显著,如语言理解顺序(语音到词义)、生成顺序(计划、发音、听到自己声音)以及上下文预测单词等方面都有惊人的一致性 研究方法:将真实对话中的人脑活动与语音到文本LLM的内部嵌入进行比较。使用皮层电图记录参与者在开放式真实对话时语音生成和理解过程中的神经信号,同时从Whisper中提取低级声学、中级语音和上下文单词嵌入,开发编码模型将这些嵌入词线性映射到大脑活动上。 具体发现 语言理解与生成顺序:在语言理解过程中,首先是语音嵌入预测沿颞上回(STG)的语音区域的皮层活动,几百毫秒后,语言嵌入预测布罗卡区(位于额下回;IFG)的皮层活动。在语言生成过程中,顺序则相反,先由语言嵌入预测布罗卡区的皮层活动,几百毫秒后,语音嵌入预测运动皮层(MC)的神经活动,最后,在说话者发音后,语音嵌入预测STG听觉区域的神经活动。这反映了神经处理的顺序,即先在语言区计划说什么,然后在运动区决定如何发音,最后在感知语音区监测说了什么。 神经活动与嵌入的关系:对于听到或说出的每个单词,从语音到文本模型中提取语音嵌入和基于单词的语言嵌入,通过估计线性变换,可以根据这些嵌入预测每次对话中每个单词的大脑神经信号。全脑分析的定量结果显示,在语音生成和语音理解过程中,不同脑区的神经活动与语音嵌入和语言嵌入的峰值存在特定的先后顺序和对应关系。 “软层次”概念:尽管大模型在并行层中处理单词,人类大脑以串行方式处理它们,但反映了类似的统计规律。大脑中较低级别的声学处理和较高级别的语义处理部分重叠,即存在“软层次”概念。例如,像IFG这样的语言区域不仅处理单词级别的语义和句法信息,也捕捉较低级别的听觉特征;而像STG这样的低阶语音区域在优先处理声学和音素的同时,也能捕捉单词级别的信息。 以往相关研究成果 2022年发表在《自然神经科学》上的论文显示,听者大脑的语言区域会尝试在下一个单词说出之前对其进行预测,且在单词发音前对预测的信心会改变在单词发音后的惊讶程度(预测误差),证明了自回归语言模型与人脑共有的起始前预测、起始后惊讶和基于嵌入的上下文表征等基本计算原理。 发表在《自然通讯》的论文发现,大模型的嵌入空间几何图形所捕捉到的自然语言中单词之间的关系,与大脑在语言区诱导的表征(即大脑嵌入)的几何图形一致。 后续研究还发现,虽然跨层非线性变换在LLMs和人脑语言区中相似,但实现方式不同。Transformer架构可同时处理成百上千个单词,而人脑语言区似乎是按顺序、逐字、循环和时间来分析语言。 总之,该研究表明,语音到文本模型嵌入为理解自然对话过程中语言处理的神经基础提供了一个连贯的框架,尽管大模型与人脑在底层神经回路架构上存在明显不同,但在处理自然语言时有着一些相似的计算原则。
1 个月前
自 1 月份 DeepSeek 推出 R1 推理模型后,欧洲包括汇丰银行等主要金融机构一直在将其与其他 AI 模型一起测试,而美国银行拒绝使用。
1 个月前
2025 年 3 月 12 日,清华大学 NLP 实验室联手中南大学等提出 APB 序列并行推理框架,可解决长上下文远距离语义依赖问题,在 128K 文本上比 Flash Attention 快约 10 倍。
1 个月前
在自然语言处理和人工智能领域,token通常是指文本中的基本单元,比如一个单词、一个标点符号或者一个子词等。100万token的输入输出量是一个较大的数据规模,以下从不同角度来理解这一概念: 从文本长度角度 一般来说,英文中一个单词可以看作一个token,中文可能一个字或一个词作为一个token。如果平均每个token对应5个字符(这只是一个粗略的估计,实际会因语言、文本类型等因素而不同),那么100万token大约对应500万个字符。以一本普通的中文书籍每页约1000字来算,500万个字符相当于5000页的书籍内容,这是非常庞大的文本量。 从处理难度角度 对于语言模型等人工智能系统来说,处理100万token的输入输出意味着要处理大量的信息。模型需要在这么多的token中理解语义、语法关系,捕捉上下文信息等,这对模型的容量、计算能力和算法设计都提出了很高的要求。模型需要有足够多的参数和足够深的网络结构,才能有效地处理如此大规模的文本数据,以生成准确、合理的输出。 处理如此大量的token还需要消耗大量的计算资源和时间。在训练过程中,可能需要使用高性能的GPU或TPU集群,花费数天甚至数周的时间才能完成训练。在推理阶段,也需要较多的计算资源来快速处理输入并生成输出,以满足实时性或高效性的要求。 从应用场景角度 机器翻译:如果用于机器翻译任务,100万token可能包含了各种领域的大量句子和段落。这意味着模型可以学习到丰富的语言表达方式和翻译模式,能够处理更复杂、更专业的翻译任务,提高翻译的准确性和质量。 文本生成:在文本生成任务中,如创作小说、新闻报道等,100万token的输入可以让模型学习到大量的文本风格、主题和结构信息,从而生成更丰富多样、更具创意和逻辑性的文本内容。 智能客服:对于智能客服系统,100万token的输入输出量可以使系统处理大量的用户咨询和问题,学习到各种常见问题的回答模式和解决方案,从而更准确、更快速地为用户提供服务,提高用户满意度。
1 个月前
埃隆·马斯克领导的美国政府效率部(DOGE)正在开发一款名为 AutoRIF(Automated Reduction in Force)的自动裁员软件,旨在帮助美国政府大规模“精简”工作人员。 AutoRIF 最初由美国国防部在二十多年前开发,已多次更新,并被多个机构用于加速裁员进程。目前,DOGE 的工程师,包括前特斯拉工程师 Riccardo Biasini,正在对 AutoRIF 的代码进行编辑。传统上,裁员由人力资源官员手动处理,首先针对试用期员工。然而,随着新软件和人工智能的使用,政府员工担心未来可能会更大规模、更快速地进行裁员。 最近,美国人事管理办公室(OPM)向政府工作人员发送电子邮件,要求他们列出每周的工作成果,这些信息据称将被输入大型语言模型(LLM)以评估员工的必要性。一些机构,如联邦调查局(FBI),建议员工不要回复这些电子邮件。目前尚不清楚 DOGE 对 AutoRIF 的具体改动内容。 此外,DOGE 的一系列举措显示,第二轮大规模裁员可能更加迅猛。 然而,值得注意的是,政府效率部的举措可能触及根深蒂固的既得利益政治势力,在美国政治极化和两党矛盾激化的背景下,马斯克作为部门领导人可能面临挑战。 总而言之,DOGE 正在推进 AutoRIF 软件的开发,以实现政府裁员的自动化和高效化,但这一过程也引发了对法律、隐私和道德方面的担忧。 (资讯来源:wired.com)
2 个月前
由斯坦福大学教授 Stefano Ermon 创立的初创公司 Inception Labs 推出了 Mercury Coder,这是第一个大规模基于扩散的语言模型 (dLLM)。与按顺序生成文本的传统大型语言模型 (LLM) 不同,Mercury Coder 使用扩散方法同时处理整个序列,类似于 AI 图像和视频生成。结果:该模型声称比现有模型快十倍,运行成本也明显降低。 产品要点: Mercury Coder 是第一个基于扩散的大型语言模型 (dLLM),它使用粗到细的方法生成文本,而不是按顺序预测标记。 它的速度比传统 LLM 快 10 倍,在 NVIDIA H100 GPU 上每秒生成超过 1000 个Token。 早期的基准测试表明,Mercury Coder 可与 GPT-4o Mini 和 Claude 3.5 Haiku 等模型相媲美,同时更具成本效益。 该模型基于斯坦福大学教授 Stefano Ermon 的研究,使用了一种不同的方法——从文本的粗略估计开始,然后并行进行提炼,类似于 Midjourney 和 OpenAI 的 Sora 等 AI 图像和视频生成器的运行方式。 据 Inception Labs 称,Mercury Coder 不仅与众不同,而且速度要快得多。该公司声称该模型可以在 NVIDIA H100 上每秒生成超过 1000 个Token,这种速度通常需要 Groq 或 Cerebras 等专用硬件加速器。该方法还降低了计算成本,使其成为希望优化 AI 基础设施的企业的一个引人注目的选择。 早期基准测试表明,Mercury Coder 的性能可与领先的 LLM 相媲美。在头对头编码评估中,该模型与速度优化模型(如 OpenAI 的 GPT-4o Mini 和 Anthropic的 Claude 3.5 Haiku)相当或优于速度优化模型,同时运行延迟仅为其一小部分。如果这些结果在实际应用中是一致的,那么 dLLM 可以提供传统 LLM 的可行替代方案,尤其是在需要高速响应的场景中,例如客户支持、代码生成和企业自动化。 行业领导者正在注意到这一点。AI 研究员 Andrej Karpathy 指出,Mercury Coder 的扩散方法与常态不同,他指出:“为什么文本生成抵制扩散,而图像和视频生成却接受了它,这一直是个谜。这个模型可以揭示 AI 文本生成的新优势和劣势。 目前,Inception Labs 将 Mercury Coder 定位为现有模型的直接替代方案,提供 API 访问和本地部署。该公司已经与希望减少 AI 延迟和成本的财富 100 强企业合作。Inception 还提及了未来的 dLLM 版本,包括针对对话式 AI 优化的模型。 基于扩散的 LLM 是否会成为传统模型的严重竞争对手还有待观察。但借助 Mercury Coder,Inception Labs 提出了一个令人信服的案例,即 AI 文本生成不必受到当今主流模型中顺序架构的限制。 (资讯来源:Maginative)
2 个月前
开源版和商业不开源版的大语言模型(LLM)在多个方面存在显著区别,包括访问方式、性能、定制化能力、数据安全性、技术支持、成本等。以下是详细对比: 1. 访问方式 开源版:通常提供模型权重、训练代码,可以本地部署或在云端运行,无需依赖第三方API。 商业版(不开源):只能通过 API 访问,模型权重和训练数据不会公开,由官方托管并提供计算资源。 ✅ 适用场景:如果企业需要完全控制权,可以选择开源模型;如果希望快速接入、低维护成本,商业 API 可能更合适。 2. 性能和优化 开源版: 性能受限于开源社区的优化进展,部分版本可能比商业版稍弱。 用户可以自行调整超参数、微调(Fine-tuning),但需要较强的 AI 开发能力。 商业版(不开源): 由官方持续优化,通常具有更强的推理能力、上下文理解能力,以及更长的上下文窗口(如 GPT-4 Turbo、Claude 3)。 可能包含专有的训练数据和优化技术,准确率、鲁棒性更高。 ✅ 适用场景:如果需要顶级性能,建议选择商业版;如果可以接受一定的性能下降,开源版可减少成本。 3. 定制化能力 开源版: 可以本地部署,支持微调(Fine-tuning)、LoRA 适配、知识库增强(RAG)等深度优化。 企业可以将行业专属数据融入模型,打造更精准的 AI。 商业版(不开源): 一般只提供 API,用户无法修改底层模型。 部分商业版支持API 微调或定制化训练,但通常需要额外费用。 ✅ 适用场景:如果希望训练行业专属模型,开源版更适合;如果只需要通用问答,商业版 API 更便捷。 4. 数据安全性 开源版: 本地部署时数据完全自控,适用于高安全性需求(如医疗、政府、军工)。 但如果使用开源云服务,数据可能受服务器提供商限制。 商业版(不开源): 需要将数据传输到供应商的服务器,可能涉及数据合规问题(如 GDPR、企业隐私)。 供应商通常提供数据加密和隐私保护,但企业需评估安全性。 ✅ 适用场景:如果数据隐私至关重要,应选开源版并本地部署;如果数据安全可控,商业 API 更省事。 5. 技术支持 开源版: 依赖社区支持,如 GitHub、论坛、开源文档,问题解决效率不稳定。 需要内部 AI 工程团队维护,维护成本较高。 商业版(不开源): 由供应商提供专业技术支持,如 SLA(服务等级协议)、企业客服。 适用于对稳定性要求高的企业用户。 ✅ 适用场景:如果企业没有强AI团队,建议使用商业 API;如果有内部 AI 研发团队,可考虑开源版。 6. 成本 开源版: 模型本身免费,但需要自行部署计算资源,如 GPU 服务器、云计算等,成本取决于模型大小和推理需求。 适合长期、大规模使用,但初始投入较高。 商业版(不开源): 需要按 API 调用量或 订阅模式 付费,如 OpenAI 的 GPT-4 API、阿里云的 Qwen-Max。 适用于短期、小规模应用,初始成本低,但长期使用可能更贵。 ✅ 适用场景:如果使用量大,开源版(本地部署)更划算;如果只是轻量应用,商业 API 更方便。 7. 典型代表 类别 代表模型 访问方式 适用场景 开源版 LLaMA 3(Meta)、Mistral、Qwen 2.5(阿里)、Baichuan 2(百川) 本地部署/云端托管 定制化应用,数据隐私要求高 商业版(不开源) GPT-4(OpenAI)、Claude 3(Anthropic)、Gemini(Google)、文心一言(百度)、Qwen-Max(阿里) API 调用 低维护、高性能、快速集成 总结:如何选择? 🔹 选择开源版 ✅: 需要本地部署,保证数据安全(如企业内部 AI、政府、医疗等) 需要微调(Fine-tuning)和深度定制(如工业 AI 专用问答系统) 具备 AI 开发团队,可承担部署和维护成本 🔹 选择商业 API(不开源) ✅: 需要高性能、稳定性(如企业客服、B2B AI 平台) 不想自己维护模型,希望快速集成(如 SaaS AI 服务) 数据隐私要求不高,可以接受数据传输到第三方
2 个月前
随着人工智能技术的飞速发展,越来越多的企业和开发者开始将目光投向这一领域。作为阿里巴巴集团旗下的通义实验室自主研发的超大规模语言模型,通义千问(Qwen)始终致力于为用户提供更加智能、便捷的服务体验。通义千问近日正式启用了全新的AI Chat域名及界面——chat.qwen.ai!这不仅是一次简单的域名更新,更是我们在用户体验优化和服务升级方面迈出的重要一步。 全新域名:简洁易记,专业高效 从现在起,用户只需访问 chat.qwen.ai,即可快速进入通义千问的AI对话平台。相比之前的入口,新域名更加简洁直观,便于记忆与传播。无论是个人用户还是企业开发者,都能通过这个统一的入口,轻松获取到所需的服务和支持。 简洁性:新域名去掉了冗余的部分,让用户一目了然。 专业性:明确指向“Chat”功能,突出我们的核心竞争力——强大的自然语言处理能力。 全球化:采用国际通用的“.ai”后缀,彰显我们在人工智能领域的领先地位。 界面焕新:更友好、更智能 除了域名的变化,通义千问的界面也进行了全面升级。新的设计风格更加现代化,操作流程更加流畅,旨在为每一位用户提供极致的交互体验。 1. 清晰的布局 新界面采用了更加清晰的功能分区,首页即展示了主要功能模块,如文本生成、代码编写、多语言支持等。无论你是初次使用还是资深用户,都能迅速找到自己需要的内容。 2. 个性化设置 用户可以根据自己的偏好调整聊天窗口的主题颜色、字体大小等细节,打造专属的使用环境。此外,我们还新增了夜间模式,让深夜工作的你也能舒适地与AI交流。 3. 增强的多轮对话能力 在新版界面中,通义千问的多轮对话功能得到了进一步加强。系统能够更好地理解上下文信息,提供连贯且精准的回答。即使面对复杂的问题或场景切换,也能保持高度的准确性。 4. 丰富的插件支持 为了满足不同用户的需求,我们引入了多种实用插件,例如文档解析、图像生成、视频编辑等。这些插件可以无缝集成到主界面中,极大提升了工作效率和创作灵感。 核心亮点:技术创新驱动优质服务 1. 超大规模参数量 基于阿里云强大的计算资源,通义千问拥有超过万亿级别的参数规模,确保了模型的强大表达能力和泛化性能。这种规模的优势使得通义千问能够在各种任务上表现出色,无论是生成高质量的文章、撰写复杂的代码,还是进行多语言翻译,都能游刃有余。 2. 多模态融合 除了传统的文本处理外,通义千问在图像、音频等领域也取得了突破性进展,真正实现了跨模态的理解与生成。例如,通义万相是通义实验室推出的一站式AI艺术创作平台,它结合了文生图、图像风格迁移、手绘草图生成精美图片等能力,为用户提供丰富的创意工具。 3. 安全与隐私保护 我们深知数据安全的重要性,因此在新版本中进一步加强了加密措施,保障用户信息安全无忧。阿里云一直致力于构建一个安全可靠的技术平台,确保用户的隐私和数据得到妥善保护。 4. 高效推理与训练 通义千问依托阿里云的高效推理和训练框架,能够在短时间内完成大量数据的处理和学习。这种高效的处理能力使得通义千问能够快速适应新的应用场景和需求,为用户提供更加及时和准确的服务。 5. 广泛的行业应用 通义千问已经在多个行业中得到了广泛应用,包括电商、金融、医疗、教育等。例如,在电商领域,通义千问可以帮助商家自动生成商品描述、回答客户咨询;在金融领域,它可以协助分析师进行市场预测和风险评估;在医疗领域,它可以辅助医生进行疾病诊断和治疗方案推荐。 结语 随着 chat.qwen.ai 的上线,通义千问将以全新的姿态迎接每一位用户的到来。未来,我们将继续秉承“让机器更好地服务于人”的理念,不断探索前沿技术,努力为全球用户带来更多惊喜。如果你还没有尝试过通义千问,请立即访问 chat.qwen.ai,开启属于你的智能之旅吧!
2 个月前
DeepSeek FlashMLA是国产AI公司DeepSeek于2025年2月24日开源的首个代码库。这里的MLA是 Multi-Head Latent Attention 的缩写,指的是多头潜在注意力机制。以下是关于FlashMLA的详细介绍: 技术原理 结合创新技术:FlashMLA的架构融合了现代AI研究中的两项关键创新技术,即低秩键值压缩和去耦位置感知注意力路径。通过矩阵分解压缩KV缓存维度,同时保持独立的旋转位置嵌入(RoPE),在不牺牲位置精度的情况下,与传统注意力机制相比,可将内存消耗降低40%-60%。 基于MLA机制:MLA即多层注意力机制,是一种改进的注意力机制,旨在提高Transformer模型在处理长序列时的效率和性能。MLA通过多个头的并行计算,让模型能同时关注文本中不同位置和不同语义层面的信息,从而更全面、更深入地捕捉长距离依赖关系和复杂语义结构。 功能特点 超高处理性能:在H800上可以实现每秒处理3000GB数据,每秒执行580万亿次浮点运算,在H800 SXM5 GPU上运行CUDA 12.6时,可实现理论内存带宽83%的利用率和计算受限配置下91%的峰值浮点运算。 支持混合精度:提供BF16/FP16混合精度支持,可实现高效内存训练和推理。 动态调度优化:基于块的分页系统,利用64元素内存块,可在并发推理请求中动态分配GPU资源,自动根据序列长度和硬件规格调整内核参数。 兼容性良好:通过简单的Python绑定与PyTorch 2.0+兼容。 应用场景 自然语言处理:在聊天机器人、文本生成等实时生成任务中,能加速大语言模型的解码过程,提高模型的响应速度和吞吐量,使回复更快速、流畅。 医疗保健:可用于加速基因组序列分析,如将分析速度从每秒18个样本提升至42个样本。 金融领域:能应用于高频交易模型,使模型的延迟降低63%,提升交易效率和决策速度。 自动驾驶:在自动驾驶的多模态融合网络中,可实现22ms的推理时间,有助于车辆对复杂路况做出快速反应。 意义价值 技术创新:代表了DeepSeek在AI硬件加速领域的深厚积累,是将MLA创新落地到硬件的具体实现,性能指标足以媲美业界顶尖方案如FlashAttention。 推动开源:打破了此前高效解码内核多由科技巨头闭源垄断的局面,为中小企业和研究者提供了“工业级优化方案”,降低了技术门槛,促进更多创新应用的诞生,推动AI行业的开源合作与发展。