2月10日,清华大学KVCache.AI团队联合趋境科技发布的KTransformers开源项目公布更新:一块24G显存的4090D,就可以在本地运行DeepSeek-R1、V3的671B“满血版”。
预处理速度最高达到286 tokens/s,推理生成速度最高能达到14 tokens/s。
KTransformers通过优化本地机器上的LLM部署,帮助解决资源限制问题。该框架采用了异构计算、先进量化技术、稀疏注意力机制等多种创新手段,提升了模型的计算效率,并具备处理长上下文序列的能力。
16 天前
将 DeepSeek 的深度推理、代码能力与 ChatGPT 的语言创造力、通用对话能力相结合,设计一个名为 DeepGPT 的 AI 工具,这确实是一个极具潜力的构想。它代表了一种“强强联合”的思路,旨在创造一个更全面、更强大的 AI 助手。 DeepGPT 的核心设计理念 双引擎协同架构: DeepSeek 引擎: 专注于深度理解、逻辑推理、复杂问题拆解、代码生成与解释、数学计算、事实核查、长文档处理(128K上下文)。它是“大脑”的分析中心和事实库。 ChatGPT 引擎: 专注于自然流畅的对话、创意内容生成(写作、诗歌、剧本)、多语言能力、情感理解、用户意图捕捉、通用知识问答、多模态(未来整合图像/语音等)的接口。它是“大脑”的表达中心和交互界面。 智能路由与融合层: 这是 DeepGPT 的“智能调度中心”。它根据用户查询的性质、复杂度、所需技能,动态决定: 将任务完全交给更适合的引擎处理(如:复杂代码问题 -> DeepSeek;写一首情诗 -> ChatGPT)。 将任务拆解,分发给两个引擎处理各自擅长的部分,然后融合结果(如:要求写一份包含市场数据分析的商业计划书 -> DeepSeek 处理数据分析和预测部分,ChatGPT 负责撰写叙述性内容和润色)。 让两个引擎分别处理同一问题,提供互补视角或进行“交叉验证”,然后由融合层生成最全面/可靠的答案。 强化优势,弥补短板: 利用 DeepSeek 弥补 ChatGPT 可能在复杂逻辑推理、精确代码生成、处理超长文档方面的不足。 利用 ChatGPT 弥补 DeepSeek 可能在对话自然度、创意写作多样性、情感表达方面的不足。 DeepGPT 的核心功能与应用领域 基于双引擎协同架构,DeepGPT 将成为一个超级智能工作伙伴和创意加速器,应用极其广泛: 研究与学术: 深度文献综述: 利用 DeepSeek 处理海量论文(128K上下文),提取关键论点、发现研究空白、总结趋势;ChatGPT 帮助撰写清晰的研究综述草稿。 复杂数据分析与解释: DeepSeek 进行统计分析、建模、代码实现;ChatGPT 将结果转化为易于理解的叙述,撰写报告。 假设生成与实验设计: 双引擎协作,基于现有知识进行推理(DeepSeek)并提出新颖、可行的研究思路和实验方案(ChatGPT)。 论文写作与润色: DeepSeek 确保逻辑严谨、数据准确、符合学术规范;ChatGPT 提升语言流畅度、可读性和表达多样性。 软件开发与工程: 全栈开发助手: DeepSeek 精通代码生成(多种语言)、调试、算法实现、系统设计;ChatGPT 解释代码逻辑、生成文档注释、编写用户手册、与产品经理沟通需求。 遗留代码理解与重构: DeepSeek 深入分析复杂/老旧代码库;ChatGPT 生成重构建议的说明文档。 自动化测试脚本: DeepSeek 编写精确、高效的测试用例;ChatGPT 描述测试场景和预期结果。 内容创作与营销: 高质量长文创作: ChatGPT 负责创意构思、初稿撰写、不同风格的文本生成;DeepSeek 负责事实核查、数据支撑、逻辑结构优化、SEO 关键词策略分析。 营销策略制定: DeepSeek 分析市场数据、用户行为、竞品信息;ChatGPT 生成吸引人的广告文案、社交媒体帖子、营销邮件主题。 剧本/小说创作: ChatGPT 负责情节构思、角色对话、场景描写;DeepSeek 确保情节逻辑自洽、世界观设定合理、历史/科技细节准确。 商业分析与咨询: 综合报告生成: DeepSeek 处理财务数据、市场预测模型、风险评估;ChatGPT 整合分析结果,撰写结构清晰、论点有力、面向不同受众(高管/投资者)的报告和演示文稿。 战略规划: 双引擎协作进行 SWOT 分析、情景规划、机会识别(DeepSeek 的数据推理 + ChatGPT 的创新发散)。 客户洞察: 分析大量用户反馈、评论(DeepSeek),提炼情感倾向和关键诉求(ChatGPT),形成洞察报告。 教育与学习: 个性化辅导: DeepSeek 精准解答数学、物理、编程等难题,提供严谨步骤;ChatGPT 用生动比喻、不同角度解释概念,鼓励学生,生成练习题。 学习材料制作: 根据知识点(DeepSeek 确保准确性和深度)生成不同难度和风格的讲解、示例、测验题(ChatGPT)。 研究性学习支持: 引导学生提出问题、查找资料(DeepSeek)、组织思路、撰写学习报告(ChatGPT)。 法律与合规: 合同/法律文件审阅: DeepSeek 利用长上下文处理冗长合同,识别关键条款、潜在风险点、逻辑矛盾;ChatGPT 生成摘要、风险提示报告、用更平实语言解释条款。 法律研究: 快速查找相关法条、判例(DeepSeek),并总结要点、分析适用性(ChatGPT)。 个人效率与知识管理: 智能信息处理: 阅读并总结超长的邮件、报告、网页内容(DeepSeek),提炼行动项(ChatGPT)。 决策支持: 针对个人选择(如职业规划、投资决策),DeepSeek 提供理性分析和数据支撑,ChatGPT 帮助理清个人价值观和偏好,综合给出建议。 个性化知识库构建: 用户输入笔记、收藏文章等,DeepGPT 自动整理、关联、提炼要点(双引擎协作),方便查询和复习。 DeepGPT 的关键特性与优势 更可靠的知识与推理: DeepSeek 的深度能力作为基础,减少“幻觉”,提高答案的可信度。 更自然的交互与表达: ChatGPT 的能力确保对话流畅、易懂、富有同理心。 处理超复杂任务: 双引擎协同可以处理单一模型难以胜任的、需要深度分析+创意表达+长上下文的任务。 灵活性与适应性: 智能路由确保用户始终获得最合适的“技能组合”来解决问题。 生产力倍增器: 在专业领域(研究、开发、分析、写作)显著提升效率和质量。 可能的挑战与实现考虑 技术复杂性: 双模型协同、路由决策、结果融合在工程实现上有较高难度,需要强大的基础设施和算法优化。 成本: 同时运行/调用两个顶级大模型成本高昂。 延迟: 协同处理可能比单一模型响应慢,需要优化流程。 模型一致性: 确保两个模型的知识库和价值观尽可能对齐,避免输出矛盾。 用户界面: 需要设计直观的界面,让用户理解何时、如何利用了双引擎的优势(例如,提供“思考过程”的透明度选项)。 结论 DeepGPT 代表了下一代 AI 助手的方向:不再是单一功能的聊天机器人,而是一个集深度分析能力、强大创造力、自然交互能力于一体的认知增强伙伴。它能够渗透到知识工作的核心环节,在科研、开发、创作、分析、教育、法律等诸多领域带来革命性的效率提升和可能性拓展。它将 DeepSeek 的“硬实力”(逻辑、代码、长文、精确)与 ChatGPT 的“软实力”(语言、创意、对话、通用)完美融合,目标是成为人类在复杂智力挑战中最得力的助手。 这样的工具一旦成熟落地,其影响力将远超现有的单一模型,真正开启“AI超级助手”的新时代。
2 个月前
📢 OpenAI即将发布GPT-4.1,多模态能力再升级! 据多家科技媒体报道,OpenAI计划于下周(2025年4月中旬)推出GPT-4.1,作为GPT-4o的升级版本,进一步强化多模态推理能力,并推出轻量级mini和nano版本。 🔍 关键升级点 更强的多模态处理 GPT-4.1将优化对文本、音频、图像的实时处理能力,提升跨模态交互的流畅度。 相比GPT-4o,新模型在复杂推理任务(如视频理解、语音合成等)上表现更优。 轻量化版本(mini & nano) GPT-4.1 mini 和 nano 将面向不同应用场景,降低计算资源需求,适合移动端或嵌入式设备。 配套新模型(o3 & o4 mini) OpenAI还将推出o3推理模型(满血版)和o4 mini,优化特定任务性能。 部分代码已在ChatGPT网页端被发现,表明发布临近。 ⏳ 发布时间与不确定性 原定下周发布,但OpenAI CEO Sam Altman 曾预警可能因算力限制调整计划。 同期,ChatGPT已升级长期记忆功能,可回顾用户历史对话,提供个性化服务(Plus/Pro用户已开放)。 🌍 行业影响 谷歌(Gemini AI)和微软(Copilot)近期也强化了AI记忆功能,竞争加剧。 GPT-4.1可能进一步巩固OpenAI在多模态AI领域的领先地位,推动商业应用(如智能客服、内容创作等)。 📌 总结:GPT-4.1的发布标志着OpenAI在多模态AI上的又一次突破,但具体性能提升和落地效果仍需观察。我们将持续关注官方更新! (综合自腾讯新闻、The Verge、搜狐等)
3 个月前
自 1 月份 DeepSeek 推出 R1 推理模型后,欧洲包括汇丰银行等主要金融机构一直在将其与其他 AI 模型一起测试,而美国银行拒绝使用。
3 个月前
2025 年 3 月 12 日,清华大学 NLP 实验室联手中南大学等提出 APB 序列并行推理框架,可解决长上下文远距离语义依赖问题,在 128K 文本上比 Flash Attention 快约 10 倍。
3 个月前
DeepSeek FlashMLA是国产AI公司DeepSeek于2025年2月24日开源的首个代码库。这里的MLA是 Multi-Head Latent Attention 的缩写,指的是多头潜在注意力机制。以下是关于FlashMLA的详细介绍: 技术原理 结合创新技术:FlashMLA的架构融合了现代AI研究中的两项关键创新技术,即低秩键值压缩和去耦位置感知注意力路径。通过矩阵分解压缩KV缓存维度,同时保持独立的旋转位置嵌入(RoPE),在不牺牲位置精度的情况下,与传统注意力机制相比,可将内存消耗降低40%-60%。 基于MLA机制:MLA即多层注意力机制,是一种改进的注意力机制,旨在提高Transformer模型在处理长序列时的效率和性能。MLA通过多个头的并行计算,让模型能同时关注文本中不同位置和不同语义层面的信息,从而更全面、更深入地捕捉长距离依赖关系和复杂语义结构。 功能特点 超高处理性能:在H800上可以实现每秒处理3000GB数据,每秒执行580万亿次浮点运算,在H800 SXM5 GPU上运行CUDA 12.6时,可实现理论内存带宽83%的利用率和计算受限配置下91%的峰值浮点运算。 支持混合精度:提供BF16/FP16混合精度支持,可实现高效内存训练和推理。 动态调度优化:基于块的分页系统,利用64元素内存块,可在并发推理请求中动态分配GPU资源,自动根据序列长度和硬件规格调整内核参数。 兼容性良好:通过简单的Python绑定与PyTorch 2.0+兼容。 应用场景 自然语言处理:在聊天机器人、文本生成等实时生成任务中,能加速大语言模型的解码过程,提高模型的响应速度和吞吐量,使回复更快速、流畅。 医疗保健:可用于加速基因组序列分析,如将分析速度从每秒18个样本提升至42个样本。 金融领域:能应用于高频交易模型,使模型的延迟降低63%,提升交易效率和决策速度。 自动驾驶:在自动驾驶的多模态融合网络中,可实现22ms的推理时间,有助于车辆对复杂路况做出快速反应。 意义价值 技术创新:代表了DeepSeek在AI硬件加速领域的深厚积累,是将MLA创新落地到硬件的具体实现,性能指标足以媲美业界顶尖方案如FlashAttention。 推动开源:打破了此前高效解码内核多由科技巨头闭源垄断的局面,为中小企业和研究者提供了“工业级优化方案”,降低了技术门槛,促进更多创新应用的诞生,推动AI行业的开源合作与发展。
3 个月前
BERT(Bidirectional Encoder Representations from Transformers)是由Google于2018年发布的一种预训练语言模型,基于Transformer架构,用于自然语言处理(NLP)任务。它的双向(Bidirectional)上下文理解能力使其在文本理解、问答系统、文本分类等任务中表现卓越。 BERT的核心特点 1. 双向上下文理解 传统语言模型(如GPT)通常是单向的(从左到右或从右到左)。 BERT采用Masked Language Model(MLM,掩码语言模型),即在训练过程中随机遮挡部分词语,并让模型根据上下文预测这些被遮挡的词,从而实现双向理解。 2. 预训练+微调(Pre-training & Fine-tuning) 预训练(Pre-training):在海量无标注文本数据(如维基百科、BooksCorpus)上进行训练,使BERT学会通用的语言知识。 微调(Fine-tuning):针对具体任务(如情感分析、问答系统、命名实体识别)进行轻量级训练,只需少量数据,即可获得良好效果。 3. 基于Transformer架构 BERT使用多层Transformer编码器,通过自注意力(Self-Attention)机制高效建模文本中的远程依赖关系。 Transformer结构相比RNN和LSTM,更适合并行计算,处理长文本能力更强。 BERT的两大核心任务 Masked Language Model(MLM,掩码语言模型) 在训练时,随机遮挡输入文本中的15%单词,让模型根据上下文预测这些词。 这种方法使BERT学习到更深层次的语言表示能力。 Next Sentence Prediction(NSP,下一句预测) 让模型判断两个句子是否是相邻句: IsNext(相关):句子A和B是原始文本中相连的句子。 NotNext(无关):句子B是随机选择的,与A无关。 这一任务有助于提高BERT在问答、阅读理解等任务中的能力。 BERT的不同版本 BERT-Base:12层Transformer(L=12)、隐藏层768维(H=768)、12个自注意力头(A=12),总参数110M。 BERT-Large:24层Transformer(L=24)、隐藏层1024维(H=1024)、16个自注意力头(A=16),总参数340M。 DistilBERT:更小更快的BERT变体,参数量约为BERT的一半,但性能接近。 RoBERTa:改进版BERT,去除了NSP任务,并采用更大数据量进行训练,提高了性能。 BERT的应用 BERT可以应用于多种NLP任务,包括: 文本分类(如垃圾邮件检测、情感分析) 命名实体识别(NER)(如人名、地名、组织识别) 阅读理解(QA)(如SQuAD问答) 文本摘要 机器翻译 搜索引擎优化(SEO)(Google已将BERT用于搜索算法) BERT的影响 推动NLP进入预训练时代:BERT的成功引发了NLP领域的“预训练+微调”范式(如GPT、T5、XLNet等)。 提升搜索引擎性能:Google 在搜索引擎中使用BERT,提高查询理解能力。 加速AI技术发展:BERT的开源推动了自然语言处理技术在学术界和工业界的广泛应用。 总结 BERT是Transformer架构的双向预训练模型,通过MLM和NSP任务学习通用语言知识,在NLP领域取得巨大突破。它的成功奠定了现代大模型预训练+微调的范式,被广泛用于搜索、问答、文本分类等任务。
3 个月前
如何整合大模型API并提供开发者服务 随着人工智能技术的快速发展,越来越多的开发者希望在自己的应用中集成AI能力,如自然语言处理、图像生成、语音识别等。如果你计划搭建一个AI平台,并向开发者(B2C)提供AI API服务,那么本文将详细介绍如何整合现有大模型的API,并成为官方分销商。 1. 选择合适的大模型API 当前市场上已有多个强大的AI大模型提供API服务,以下是几家主流供应商: OpenAI(ChatGPT/GPT-4):适用于通用对话、文本生成、代码补全等。 Anthropic(Claude):擅长安全对话和长文本理解。 Google Gemini(原Bard):适合多模态(文本、图像)AI应用。 Mistral AI:提供高效、开源的AI模型,适合灵活集成。 Hugging Face:开放API,可用于多种NLP任务。 Stable Diffusion/DALL·E:用于图像生成。 Whisper API:优秀的语音识别能力。 选择API时,需要考虑成本、调用限制、商业许可、模型能力等因素。 2. 如何获得大模型API的分销权限? 如果你希望不仅是API的用户,还能将API分发给开发者,需要与AI公司建立更深层次的合作关系。不同公司有不同的合作方式: OpenAI(ChatGPT/GPT-4) 标准API使用:直接在OpenAI官网注册并获取API Key。 企业级API访问:通过 OpenAI Enterprise 申请更高额度的API。 成为OpenAI API Reseller(API分销商):需要直接联系OpenAI商务团队(sales@openai.com)并提供业务计划,通常要求较大的流量或消费额度。 Anthropic(Claude) 访问 Anthropic API 并申请企业合作。 需要提供详细的业务应用场景,并确保数据安全合规。 直接联系 sales@anthropic.com 申请API分销权限。 Google Gemini(原Bard) 使用 Google AI Studio 获取API。 申请Google Cloud AI企业级API,并与Google商务团队合作。 通过 Google Cloud AI Solutions 申请大规模API使用权限。 Mistral AI 访问 Mistral API 并申请企业级合作。 直接联系 Mistral 商务团队申请API分销许可。 Hugging Face 访问 Hugging Face Inference API。 联系 Hugging Face 申请企业API许可,并可能合作进行API优化。 3. 技术架构:如何整合多个API? 如果你希望提供一个集成多个AI API的服务平台,你需要构建一个API管理系统,包括: (1)API网关与管理 API网关(API Gateway):使用 Kong、AWS API Gateway、Apigee 统一管理所有API。 身份认证(Authentication):使用 JWT Token 或 OAuth2 进行用户管理。 负载均衡与缓存:结合 Redis 或 Cloudflare 优化API请求速度。 (2)用户管理与计费系统 API密钥管理:允许用户注册并申请API Key。 调用监控与限流:防止滥用,确保稳定性。 计费系统:使用 Stripe、PayPal 提供按量计费或订阅计划。 (3)前端支持与开发者体验 API文档:使用 Swagger UI 或 Redoc 提供清晰的API说明。 SDK支持:开发 Python/Node.js SDK 方便开发者集成。 在线测试环境:允许开发者在Web端试用API调用。 4. 商业模式:如何盈利? 如果你计划向开发者提供API服务,可以采用以下盈利模式: (1)免费+付费模式 提供 免费调用额度(如每月100次),超出后按量付费。 按不同模型提供不同的价格(GPT-4 高级版 vs GPT-3.5 免费版)。 (2)订阅模式 个人套餐:低价格,适合独立开发者。 企业套餐:支持高并发调用,并提供专属API密钥。 定制服务:为大型企业或团队提供专属AI API。 (3)增值服务 提供高优先级的API访问,减少延迟。 允许用户定制API模型参数,提高个性化。 结合其他工具,如AI自动化工作流、数据分析等。 5. 未来展望 随着AI技术的普及,越来越多的开发者希望将大模型能力集成到他们的产品中。如果你能整合多个AI API,并提供易用的开发者服务,将能在这一市场获得先机。通过与OpenAI、Anthropic、Google等公司建立合作,并搭建高效的API管理系统,你可以打造一个强大的AI API分发平台,为全球开发者提供优质的AI服务。 如果你有意向进入这一领域,不妨立即申请各大AI公司的企业级API,并开始搭建你的API分发平台!
3 个月前
随着人工智能技术的飞速发展,像DeepSeek这样的大模型正在以前所未有的方式改变我们的生活、工作和社会。这些先进的AI工具不仅服务于企业和专家,也为普通人提供了前所未有的机会,让他们能够突破传统限制,实现自我提升和价值创造。以下是DeepSeek等大模型为普通人带来的十大新机遇: 1. 教育平权:个性化学习让知识触手可及 在知识经济时代,教育是个人发展的基石。然而,传统的教育资源分配往往存在不均衡的问题。DeepSeek 的“自适应学习系统”通过分析用户的学习习惯和目标,提供量身定制的学习计划,帮助职场人士高效备考职业资格考试(如CPA、CFA),或快速掌握新技能(如编程、数据分析)。这种技术降低了学习门槛,让更多人享受到高质量的教育资源,从而实现教育公平。 2. 就业革命:人机协作提升职场竞争力 面对日益激烈的就业市场,DeepSeek 的“智能工作台”成为职场人的得力助手。无论是自由职业者还是全职员工,都可以通过DeepSeek 自动化完成重复性任务(如撰写报告、代码调试),并获得实时建议以优化工作成果。此外,DeepSeek 还能分析市场需求,推荐高价值项目,助力用户提升收入水平。这种人机协作模式不仅提高了工作效率,还让普通人在职场中更具竞争力。 3. 创业加速:智能化管理降低创业风险 对于许多普通人来说,创业是一条充满挑战的道路。DeepSeek 的智能管理系统为创业者提供了全方位支持,包括市场调研、趋势预测、运营优化以及客户关系管理等功能。即使是零技术背景的用户,也能借助DeepSeek 快速开发产品原型、制定营销策略,并吸引投资。这项技术显著降低了创业门槛,让更多人有机会将梦想变为现实。 4. 医疗普惠:个性化健康管理改善生活质量 慢性病管理一直是全球医疗体系的一大难题。DeepSeek 的健康助手通过整合用户的基因信息、生活习惯和体检数据,生成个性化的健康管理方案。它不仅能预警疾病风险,还能动态监测健康状况,减少不必要的线下复诊次数。这项技术不仅提升了医疗服务的可及性,还大幅降低了患者的医疗成本,真正实现了“科技造福民生”。 5. 财富升级:智慧钱包助力财富增值 理财对大多数人而言是一项复杂且耗时的任务。DeepSeek 的“智慧钱包”通过大数据分析和算法优化,为用户提供专业的投资建议。无论是风险评估、资产配置还是动态调仓,DeepSeek 都能根据用户的具体情况量身定制方案,帮助他们在不确定的市场环境中实现财富增值。这项技术让普通人无需具备专业金融知识,也能轻松管理自己的财务未来。 6. 社交赋能:提升人际交往能力 良好的社交能力是职场成功和个人幸福的重要因素之一。DeepSeek 的社交辅助功能可以帮助用户分析对话中的语气和情感,提供实时反馈,避免沟通失误。同时,它还能根据对方兴趣点生成有趣的话题,缓解社交焦虑。通过DeepSeek,普通人可以更自信地参与社交活动,建立更广泛的人脉网络。 7. 文化创作:激发创意潜能 无论是写作、绘画还是音乐创作,DeepSeek 都可以成为艺术家和爱好者的创意助手。它可以自动生成故事大纲、诗歌或剧本初稿,提供语言润色建议;也可以根据用户描述生成图像或设计草图,甚至协助创作旋律和编曲。这项技术极大地降低了艺术创作的技术门槛,让每个人都能轻松表达自己的创意想法。 8. 电商优化:精准营销提升销售业绩 DeepSeek 在电商领域的应用为普通人开辟了新的商业机会。通过分析用户行为数据和市场趋势,DeepSeek 可以帮助小型商家优化产品页面、制定定价策略,并生成高效的广告文案。此外,它还能自动推荐适合的促销活动,吸引更多潜在客户。这项技术让普通人即使没有丰富的营销经验,也能轻松运营自己的线上店铺,实现可观的经济收益。 9. 数据变现:挖掘数据价值创造收入 在数字化时代,数据已经成为一种重要的资产。DeepSeek 提供的数据分析工具可以帮助普通人从日常生活中收集的数据中提取有价值的信息,并将其转化为经济收益。例如,通过分析社交媒体互动、购物记录或旅行偏好,DeepSeek 可以为企业提供定制化的市场洞察报告。这项服务不仅让普通人能够参与到数据经济中,还能从中获得额外收入。 10. 内容创作:打造个人品牌实现流量变现 DeepSeek 的内容生成能力为普通人提供了全新的创收途径。无论是撰写博客文章、制作短视频还是设计在线课程,DeepSeek 都能提供强大的支持。它可以根据用户需求生成高质量的内容素材,并优化标题、关键词和排版,提高内容的吸引力和传播效果。通过持续输出优质内容,普通人可以逐步建立起自己的个人品牌,并通过广告合作、付费订阅等方式实现流量变现。 结语 DeepSeek 等大模型的出现,标志着AI技术从实验室走向了大众生活。它们不仅改变了教育、就业、创业、医疗、理财等领域,还在电商优化、数据变现和内容创作等方面为普通人带来了新的经济收益机会。无论你是学生、职场人、创业者还是普通市民,都可以借助这些强大的工具找到属于自己的逆袭之路。在未来,DeepSeek 等AI技术将继续拓展边界,为每个人创造更加美好的生活。
Minimax(海螺AI)已由大模型名Minimax替换原海螺AI。现海螺AI为Minimax视频生成产品名。
海螺AI