DELFI 是由 SLB(原斯伦贝谢)开发的开放、可扩展且安全的云端数字平台,旨在为石油和天然气行业的勘探、开发、钻井、生产以及能源转型提供支持。
DELFI平台集成了全球领先的应用程序、人工智能(AI)、数据管理和基于物理的科学技术,为能源行业的各个环节提供全面的数字化解决方案。
DELFI 平台的核心组件之一是 DELFI Data Science,这是一个专为能源工作流程设计的 AI 和分析解决方案包。它使地球科学家和工程师能够轻松地构建、管理和部署 AI 模型,以解决日常挑战,其操作简便如同使用电子表格。
此外,DELFI 平台还支持多学科协作,定义了从勘探到井封闭全过程的动态关系新标准。通过将人工智能、数据分析和自动化技术相结合,DELFI 从根本上改变了勘探开发的各个环节,提高了工作效率和决策质量。
值得注意的是,SLB 与 NVIDIA 合作,加速在 DELFI 数字平台上开发和部署特定行业的生成式 AI 基础模型。这项合作利用 NVIDIA NeMo 平台,旨在为能源行业提供先进的 AI 解决方案,进一步增强 DELFI 的功能。
总的来说,DELFI 平台通过融合先进的 AI 技术、强大的数据管理和多学科协作,为能源行业提供了全面的数字化转型工具,助力企业在不断变化的市场中保持竞争力。
10 天前
AI技术在汽车行业应用广泛,在研发设计上,能生成设计方案、优化虚拟仿真测试;生产制造中,智能机器人提高效率与质量,AI用于检测和流程优化;自动驾驶方面,实现环境感知、决策与路径规划;智能座舱里,多模态交互和智能显示提升体验;售后服务时,可诊断预测故障、提供客户服务;在销售和市场分析中,能预测趋势、精准营销。 研发设计 方案生成与优化:AI算法能根据市场需求和消费者喜好,快速生成多种汽车外形、内饰设计方案。还可通过大模型技术筛选参数,优化设计,缩短设计、验证和修改周期。 虚拟仿真测试:利用AI进行车辆性能、安全性等方面的虚拟仿真测试,如车身气密性仿真、喷涂仿真等,减少实际测试次数,降低研发成本。 生产制造 智能机器人装配:智能机器人可精确完成复杂装配任务,通过内置传感器和智能控制系统,实时监测零部件尺寸精度、装配紧密程度等参数并及时调整。 质量检测:AI视觉检测系统对生产线上的质量图片进行分析计算,能自动识别缺陷并警告、推送责任人处理,还可自动生成统计报表。 生产流程优化:通过分析生产数据,AI找出瓶颈环节和潜在质量问题,实现生产效率最大化和产品质量最优化。数字孪生技术可创建物理车辆的虚拟副本,用于测试产品性能,优化制造过程。 自动驾驶 环境感知与决策:依靠车载传感器、摄像头和雷达收集环境信息,由AI算法分析处理,实现车辆自主导航和决策,如自适应巡航、自动紧急制动等。 路径规划:根据实时路况和目的地,AI为车辆规划最优行驶路径,同时考虑交通规则、行人等因素,确保行驶安全和高效。 智能座舱 语音交互:语音助手可识别和理解驾驶员的语音指令,实现导航、音乐播放、车窗控制等功能,让驾驶员专注于驾驶。 情感交互:通过监测驾驶员的表情、情绪等,提供情感陪伴和个性化服务,如根据驾驶员情绪调整车内氛围灯、音乐等。 售后服务 故障诊断与预测:基于车辆传感器数据和历史维修记录,AI可预测车辆可能出现的故障,提醒车主及时保养和维修。在维修时,AI系统能快速定位故障原因,提供维修方案建议。 客户服务:AI驱动的虚拟助手在售前、售中和售后为客户提供支持,解答产品咨询、处理投诉等,提供24小时不间断服务,提高客户满意度。 供应链管理 需求预测:AI通过分析市场趋势、消费者行为等数据,帮助汽车制造商预测未来市场需求,以便合理安排生产计划和原材料采购。 库存管理与物流优化:优化库存管理,减少库存积压和缺货现象。同时,AI优化物流配送路线和计划,提高物流效率,降低成本。
1 个月前
2025年3月31日,在2025年汉诺威工业博览会上,一台罗尔斯-罗伊斯(Rolls-Royce)的飞机发动机被展示在微软的展台上。这家发动机制造商利用微软的人工智能技术进行数据管理和数据分析。 人工智能(AI)是汉诺威工业展2025年的核心主题。这场全球最重要的工业博览会将于3月31日至4月4日在德国汉诺威举行,届时将展示人工智能如何为工业带来革命性变革。以下是为何这一年对工业界如此重要的原因。 人工智能成为竞争力的关键 人工智能不再是科幻电影中的概念,而是已成为工业领域的现实。2025年的汉诺威工业展将展示人工智能如何通过优化生产流程、提升效率和推动创新来增强企业的竞争力。例如,人工智能助手可以支持工厂车间的日常工作,而基于数据的预测性维护则能减少停机时间。 微软等科技巨头将在展会上展示其最新的人工智能解决方案。例如,微软推出的“工厂运营代理”(Factory Operations Agent)是一种人工智能助手,旨在优化工厂车间的流程。它能让工人通过自然语言查询分析机器数据,帮助管理者改进生产过程并快速识别和解决问题。 一项调查显示,82%的企业认为人工智能对德国工业的竞争力至关重要。然而,46%的企业担心德国工业可能会错过人工智能革命的机遇。这使得2025年的汉诺威工业展成为展示最新技术并推动其实施的关键平台。 加拿大作为伙伴国:人工智能与可持续发展的结合 2025年的伙伴国是加拿大,该国以“未来已来”(The future's here)为主题,展示其在自动化、能源、数字化转型和绿色技术领域的优势。加拿大拥有超过200家参展企业,致力于推动绿色、数字化和可持续的工业未来。人工智能在其中扮演着重要角色,例如通过优化能源使用和支持可再生能源技术实现更可持续的生产方式。 加拿大财政部长弗朗索瓦-菲利普·尚帕涅(François-Philippe Champagne)表示:“我们很高兴能继续国际合作,并在汉诺威工业展上展示超过200家代表绿色、数字化和可持续未来的加拿大企业。”这不仅加强了德加之间的经济联系,也为全球工业的未来发展指明了方向。 人工智能的具体应用 汉诺威工业展2025将展示人工智能在工业中的多种实际应用,包括: 自动化和机器人技术:人工智能驱动的自主机器人能够执行复杂任务,提高生产效率。 预测性维护:通过分析机器数据,人工智能可以预测潜在故障,从而减少意外停机。 质量控制:人工智能系统可以通过图像识别技术快速检测产品缺陷。 供应链优化:人工智能帮助企业更好地管理库存和物流,降低成本。 这些应用不仅提高了效率,还为中小企业提供了利用尖端技术的机会。展会上还将特别设立面向中小企业的展区,展示专为这一群体设计的可负担的人工智能解决方案。 人工智能的挑战与机遇 尽管人工智能潜力巨大,但其推广也面临挑战。例如,数据隐私和人工智能系统的透明度问题引起了广泛关注。欧盟即将推出的《人工智能法案》(AI Act)将为人工智能的使用设定严格标准,这可能会影响其在欧洲的推广速度。 与此同时,人工智能也带来了巨大机遇。它不仅能提升生产力,还能加速新产品和服务的开发。例如,在制药行业,人工智能可以缩短药物研发时间,从而更快地将新药推向市场。 汉诺威工业展:通往未来的桥梁 汉诺威工业展不仅是技术的展示平台,也是全球工业界交流的中心。超过4000家来自60多个国家的参展商将在展会上展示他们的创新成果。今年的展会预计将吸引超过13万名观众,与2023和2024年的参观人数相当。 对于德国工业而言,2025年可能是决定性的一年。人工智能的广泛应用可能标志着工业4.0的新阶段,即通过数字化和智能化实现更高效、更可持续的生产方式。正如微软德国公司总经理艾格尼丝·赫夫特伯格(Agnes Heftberger)所言:“人工智能已走出试验阶段,正在工业中大规模应用。” 结语 汉诺威工业展2025将是人工智能在工业中全面展示其潜力的一年。从优化生产到推动可持续发展,人工智能正在改变工业的面貌。对于企业来说,这既是挑战也是机遇——抓住这一趋势的企业将在未来占据领先地位。 (资讯:德国商报;图片:Julian Stratenschulte/dpa)
1 个月前
人工智能是汉诺威工业展上的主导主题 微软正在推出创新助手,旨在显著简化工厂的工作流程。在近日开幕的2025汉诺威工业博览会上,微软展示了可广泛应用于工业领域的具有人工智能的创新虚拟助手。该软件公司在此次展会上展示的新产品之一是“工厂运营代理”(Factory Operations Agent)。 据该公司介绍,这是一个人工智能助手,旨在优化工厂车间的流程。例如,该解决方案使工人能够通过使用自然语言查询来分析机器的数据。 “负责任的经理”将能够优化制造流程。人工智能助手还可以比以前更轻松地识别错误来源并解决问题。 微软德国公司董事总经理阿格尼丝·赫夫伯格在汉诺威工业博览会开幕式上表示,人工智能已经走出了测试和实验阶段,正在工业领域得到广泛应用。 “我们必须毫不犹豫地引入人工智能,否则德国将在国际竞争中落后。我们必须让数据宝藏为人工智能所用。” 德国人工智能已经存在 根据德国数字协会Bitkom的一项代表性调查,42%的德国工业企业已经在生产中使用人工智能,另有三分之一(35%)有相应计划。其中包括机器的监控、机器人和车辆的控制以及能源消耗的优化:这项调查是在德国 552 家拥有 100 名或更多员工的工业制造公司中进行的。82%的公司认同人工智能的使用对于德国工业的竞争力至关重要。 然而,近一半(46%)的人认为德国工业界可能会错过人工智能革命。微软与谷歌、Meta、亚马逊并列成为全球领先的人工智能系统提供商,部分原因是微软首席执行官萨蒂亚·纳德拉早期投资数十亿美元与加州人工智能初创公司OpenAI及其开发的聊天机器人ChatGPT进行全面合作。 (资讯来源: tagesschau.de, 图片来源: heise.de)
1 个月前
Ali Kashani 是 Serve Robotics 的联合创始人兼首席执行官,自 2021 年 1 月公司成立以来一直担任这一职务。在创立 Serve Robotics 之前,Kashani 曾担任 Postmates 的副总裁,并联合创立了智能家居技术公司 Neurio Technology(后被 Generac Power Systems 收购)。他拥有计算机工程学士学位和机器人学博士学位,并拥有 15 项已授权或正在申请的专利。 业务增长与财务表现 在 Kashani 的领导下,Serve Robotics 实现了显著增长,2024 年收入达到 180 万美元,同比增长 700%。然而,公司仍处于扩张阶段,2024 年 GAAP 净亏损为 3920 万美元。该公司专注于开发低排放自动驾驶送货机器人,主要服务于美国公共空间的食品配送。 战略合作与市场扩展 Kashani 强调了与行业巨头的关键合作: Magna International:独家合同制造协议,支持机器人规模化生产。 Uber Technologies:配送服务合作,Uber 还持有价值约 7150 万美元的 Serve Robotics 股份。 NVIDIA:技术合作,增强机器人人工智能能力。 公司计划 2025 年将机器人车队扩展至 2000 台,并进军达拉斯和亚特兰大等新市场。 技术与创新 Serve Robotics 已推出第三代送货机器人,重点提升: 配送效率与安全性 降低制造成本 人工智能驱动的自主性增强 挑战与未来展望 Kashani 讨论了公司在扩展至迈阿密等新市场时面临的挑战,包括: 本地法规适应 餐厅合作伙伴的工作流程整合 最后一英里配送的优化 他认为,机器人技术在各个领域具有无限潜力,而 Serve Robotics 正处于这一变革的前沿。 (图片来源:Serve Robotics 官网)
1 个月前
Reflex Robotics 是一家专注于开发低成本、高可靠性通用人形机器人的美国初创公司,总部位于纽约布鲁克林。该公司致力于通过自动化技术解决重复性劳动问题,其机器人主要应用于仓储物流、物料搬运等领域。 以下将从其公司基本信息、技术产品特点、商业模式、发展规划等维度展开介绍: 基本信息 成立时间与地点:由美国MIT毕业生于2014年创立,他们曾在 Telsa、Boston Dynamics 和 Amazon 拥有硬件经验,在纽约和旧金山设有办事处。 团队规模:较小,仅约5人。 融资情况:已完成由Khosla Ventures领投的700万美元种子轮融资。 技术与产品特点 硬件设计:采用轮式底盘与动态躯干的组合结构,底座配备四轮驱动系统,最高时速30公里,转向半径接近零;躯干通过液压升降机构可上下调节50厘米,配合三自由度机械臂,作业空间从地面到2米。 感知系统:头部搭载多模态传感器阵列,包括双目立体视觉摄像头、激光雷达和触觉传感器,动态避障算法可在50毫秒内重新规划路线,货物分拣效率达到人工的1.8倍,错误率降低至0.03%以下。 控制模式:采用“人在回路中”的混合控制模式,操作员通过VR设备远程监控多台机器人,还可通过“众包学习”机制记录操作者示范动作数据并上传至云端知识库,供其他机器人学习,三个月内自主作业率从38%提升至67%。 应用领域 仓储物流:能在仓库中进行货物挑拣、运输、码垛等工作,在GXO物流中心,每天可完成2000箱货物的码垛作业,每层堆叠误差小于2毫米。 工业生产:可执行精密装配任务,如将直径0.5毫米的轴承准确嵌入电机转子,重复定位精度达到±5微米,也可在木工车间完成木板切割、砂光、喷涂等全流程作业。 商业模式 机器人即服务(RaaS):企业无需购买设备,只需支付每月1500美元的服务费,即可获得包括维护、升级、保险在内的全套解决方案。 供应链布局:依托麻省理工学院的制造创新中心,将原型到量产周期压缩至90天,自主设计的柔性生产线日产能达50台,并在15个国家设立快速响应中心。 发展规划 提升自主性:计划在未来逐步实现更高的自主性,2026年人机监管比例从1:1优化至1:4。 技术升级:硬件层面引入液态金属关节提升机械臂柔顺性;软件层面训练多模态大模型,实现自然语言指令到动作的端到端转换。 (图片来源:therobotreport.com)
1 个月前
德国Comarch ERP Enterprise 是一款全面的企业资源规划 (ERP) 系统,专为寻求在流程方面提高 ERP 系统用户技术进步水平的企业而设计。它是一款现代化的 ERP 系统,具有高度的灵活性和可扩展性,能够满足各种规模和行业的企业的需求。 Comarch企业软件公司最近撰文:“ChatERP: Quantensprung im Enterprise-Resource-Planning”,即ChatERP在企业资源规划中的巨大进步。这份白皮书提到ERP系统是企业的核心,整合了关键业务流程和数据。过去,AI在ERP中的应用成本高且复杂,主要适用于大企业。但生成式AI和大型语言模型(如ChatGPT)的出现改变了这一状况,使得中小企业也能利用AI提升竞争力。这里的关键点是生成式AI降低了使用门槛,使得ERP中的AI助手变得可行。 1. 引言与背景 ERP系统的重要性:作为企业核心,整合关键业务流程(生产、采购、销售等)及数据(客户、订单、库存等)。AI在ERP中的演变:传统AI(如机器学习)成本高、数据需求大,仅适用于大企业;生成式AI(如ChatGPT)通过大型语言模型(LLM)降低门槛,使中小企业也能利用AI提升竞争力。ChatERP的定位:Comarch ERP Enterprise(6.4+版本)内置的多语言AI助手,通过自然语言交互革新ERP使用方式。 2. 改善可用性与降低使用障碍 自然语言交互:用户可通过对话形式与ERP系统互动,支持多语言,会话上下文感知。 动态帮助系统:基于RAG(检索增强生成)技术,AI助手深度理解ERP系统细节,无需额外训练。替代静态文档,提供实时、步骤化指导(如创建新文章、导航功能)。 降低学习成本:新用户快速上手,缩短培训时间;有经验用户更快掌握新功能。减少对IT支持的依赖,释放IT团队资源用于创新任务。 3. 通过语音/文本命令高效控制应用 多模态交互:支持传统UI操作与语音/文本指令结合,提升效率。应用场景: 快速导航:直接跳转深层功能(如“打开分类为家居用品的文章”)。数据操作:创建/打开记录(如“为Mustermann公司新建订单”并预填数据)。自动化任务:处理重复性工作(数据清理),但关键操作需人工审核。 类似消费级助手(如Siri):但针对企业复杂场景优化,通过API集成ERP功能。 4. 通过聊天探索ERP数据价值 数据查询与分析: 自然语言生成报告(如“显示上季度各地区销售额”),自动生成图表或摘要。预测与洞察:销售趋势预测、库存优化建议。 降低数据分析门槛:非技术用户无需复杂技能即可获取业务洞察,支持数据驱动决策。 5. 安全与合规 权限管理:通过架构设计确保数据访问合规性(如Berechtigungen权限控制)。数据隐私:企业数据仅用于内部处理,符合GDPR等法规。 6. 实施建议与结论 采用策略: 选择兼容现有系统的AI助手(如ChatERP),分阶段部署,从小任务开始。培训员工适应新交互方式,结合传统与AI操作以最大化效率。 未来潜力: 持续优化AI模型,扩展应用场景(如供应链优化、客户行为分析)。推动ERP从“记录系统”向“智能决策支持系统”转型。 核心价值总结: ChatERP通过自然语言交互、动态帮助、语音控制及智能数据分析,显著提升ERP系统的易用性、效率和决策支持能力,尤其助力中小企业以更低成本实现数字化转型。
2 个月前
DELFI 是由 SLB(原斯伦贝谢)开发的开放、可扩展且安全的云端数字平台,旨在为石油和天然气行业的勘探、开发、钻井、生产以及能源转型提供支持。 DELFI平台集成了全球领先的应用程序、人工智能(AI)、数据管理和基于物理的科学技术,为能源行业的各个环节提供全面的数字化解决方案。 DELFI 平台的核心组件之一是 DELFI Data Science,这是一个专为能源工作流程设计的 AI 和分析解决方案包。它使地球科学家和工程师能够轻松地构建、管理和部署 AI 模型,以解决日常挑战,其操作简便如同使用电子表格。 此外,DELFI 平台还支持多学科协作,定义了从勘探到井封闭全过程的动态关系新标准。通过将人工智能、数据分析和自动化技术相结合,DELFI 从根本上改变了勘探开发的各个环节,提高了工作效率和决策质量。 值得注意的是,SLB 与 NVIDIA 合作,加速在 DELFI 数字平台上开发和部署特定行业的生成式 AI 基础模型。这项合作利用 NVIDIA NeMo 平台,旨在为能源行业提供先进的 AI 解决方案,进一步增强 DELFI 的功能。 总的来说,DELFI 平台通过融合先进的 AI 技术、强大的数据管理和多学科协作,为能源行业提供了全面的数字化转型工具,助力企业在不断变化的市场中保持竞争力。
2 个月前
借助SAP Business AI,您可以在面对挑战时获得支持,并实现潜在的数百万欧元成本节省。 SAP提供具备直观、灵活且强大AI功能的应用程序,帮助客户优化业务流程。 通过AI代理和全面的流程上下文提升企业整体效率 Joule中的AI代理能够理解您的业务流程,并安全、受控地访问您的数据。凭借超过1,300种技能,它们可使导航和交易任务的执行速度提高多达90%,并跨所有企业流程协同工作,以解决最复杂的任务。 将企业生产力提高30% SAP目前拥有130多个活跃的AI场景,并计划到2025年底增加至400个,为各个业务领域提供广泛的AI解决方案,助您更快、更高效地达成目标。 领先AI供应商为您的个性化业务需求提供定制支持 借助创新的AI技术以及我们顶级合作伙伴的大型语言模型,SAP Business AI可为您提供无缝集成的智能解决方案。 大幅提高企业团队的工作效率:在供应链、财务、采购、HR、销售等业务领域,创造切实的价值。 1,借助AI构建更敏捷、更具韧性且以客户为中心的供应链 通过优化运营、构建高效供应链并促进可持续增长的AI,供应链团队可以实现更优表现。 高效、敏捷且具备韧性的供应链比以往任何时候都更为重要。AI可帮助您获取深刻洞察力,提高供应链的韧性,确保全球物流畅通无阻。您可以充分利用日益复杂的供应链,预测风险并采取即时纠正措施。快速评估风险和潜在延误,关注最关键的货运任务,并确保按时交付。 更快发现错误 及早识别制造过程中的偏差,提高员工生产力,确保质量一致性,并将检验成本降低25%²。 降低50%²的交付成本 自动化入库处理以降低物流成本,检测异常情况,并自动录入数据以加速处理。 2,利用AI优化财务管理,提高收入,增强风险控制 财务团队可借助AI优化运营现金流、提高收入增长,并优化净利润率,为企业创造真正的价值。 应收账款核对工作量减少71% 消除人工付款核对,实现AI驱动的对账和付款通知提取,优化应收账款管理。 降低因欺诈造成的收入损失 利用AI与SAP S/4HANA Cloud Private Edition中的SAP Business Integrity Screening,提前识别并防范欺诈行为。 3,借助AI优化采购支出、降低风险并提升供应链效率 利用Business AI提高供应商绩效和运营效率,同时节省成本。 市场竞争分析速度提升90% 借助AI优化市场调研和供应商选择,加快品类策略制定。 采购流程信息搜索速度提高95% 通过Joule的自然语言界面快速查找采购数据,加速决策制定。 外部职位描述创建速度加快85% 将要点转化为详细的职位描述,并翻译成20多种语言。借助智能筛选,精准匹配顶尖人才。 4,利用AI赋能人力资源,使员工成功并提升企业敏捷性 人力资源团队可利用AI提升员工参与度和留存率,更快招聘合适人才,并节省成本。 日常HR任务完成速度提高90% Joule集成自然语言处理,可轻松导航SAP SuccessFactors模块,快速完成招聘、入职、薪资发放等任务。 申请审核速度提升80% 加快招聘决策,通过AI筛选候选人,使其资质与职位要求精准匹配。 5,利用AI提高销售和服务效率,提供卓越客户体验 通过降低获客成本、优化销售周期并提升客户忠诚度,提高企业收入。 SAP Business AI for Customer Experience助力销售、服务和营销全流程的智能化,借助Joule释放洞察力,增强业务影响力,提供个性化体验,助力企业提升客户互动质量。 显著缩短案件转办和查询时间 利用Joule代理自动分类客户案例,主动提供答案,优化销售和服务质量。 销售例行任务完成速度提高80% 在SAP Sales Cloud中与Joule Copilot“对话”,利用智能分析将潜在客户转化为实际客户。 6,利用AI优化营销和电商,提升客户互动 利用AI扩展全渠道互动,提供个性化体验,优化电商产品搜索,提高企业收入和利润率。 目标客户群体细分速度提高90%² 借助Joule快速创建客户群体细分,利用AI轻松制定和衡量营销旅程及关键成功指标。 实现更精准的个性化推荐 基于客户行为、购买历史和搜索模式提供个性化推荐。分析库存、销售趋势和订单历史,预测需求并优化库存水平。 7,利用AI提升IT和开发能力,加速产品创新 通过AI提高企业业务连续性,提升生产力和系统可用性,减少安全事故,并提高IT项目成功率。 SAP BTP凭借生成式AI,优化数据管理、自动化流程、推动创新,并提升开发人员效率,让您的团队实现更大成就。 应用程序开发成本降低30% 借助SAP Build Code的AI驱动编码工具,加速应用开发。 SAP应用管理效率提升75% 通过SAP Automation Pilot的智能提示,自动化工作流,减少手动DevOps任务。 (信息来源:SAP官网)
2 个月前
随着DeepSeek-R1的出现,相较于以往的大模型,带来了更先进的语义理解和数据处理能力,AI技术迎来了新的里程碑。喆塔科技作为国产领先的数智化平台领跑者,其“喆学大模型”通过融合行业Know-How与AI、大数据和云计算技术,在良率提升、效率优化及成本控制方面已取得显著成效。 Zeta科技宣布喆学模型接入R1模型 DeepSeek-R1的接入,“喆学大模型”能够更精准地分析复杂工业数据,提前预测设备故障,并提供科学决策建议,优化资源利用。这一结合为半导体、光电显示、新能源等高端制造行业注入了新的变革力量,帮助企业在这个竞争激烈的时代中保持领先。 接入DeepSeek-R1以后,喆学大模型显著增强了其在智能问答、决策支持、自我进化、易用性和垂直应用开发等方面的能力。这一创新不仅大幅降低了企业的学习门槛和技术障碍,还显著提升了工作效率和准确性,为企业实现更高效的生产和管理提供了强有力的支持。通过将复杂的数据转化为可操作的见解,并为决策提供科学依据,喆学大模型帮助企业应对工业AI时代的挑战,推动其实现数字化、智能化转型的新飞跃。 这些应用场景大模型智能问答超便捷: 工程师在工作中遇到困难,只要输入问题,就能马上得到详细的答案,它能为你画图表、做分析、写报告就像身边随时有个百事通,工作效率想不高都难。 良率分析小助手:紧盯分析数据,多轮智能问答,智能问答出图,快速给出建议,节省繁琐、重复操作步骤,提升分析效率。 Text2SQL真方便:业务人员不用再费劲去学复杂的 SQL 语言了,轻松就能查询数据,工作变得更轻松。 智能 BI 很直观:它能把业务数据深度分析,还能以可视化的形式呈现出来,市场预测和策略建议都能精准给出,企业发展更有方向。 例如: 在半导体行业,面对复杂良率分析和新员工上手难的问题,喆塔科技提供了融合喆学大模型与自动良率分析的解决方案。通过智能问答模块,新手能快速掌握分析流程和数据获取;指令生成功能依据用户偏好一键创建图表,简化操作;智能根因分析则迅速定位良率问题并提供决策支持。 (信息来源:芯湃资本)
2 个月前
企业越智能地利用数据,利润就越大。这一点不仅为谷歌、Meta和微软等国际软件公司所熟知,制造业企业也同样明白。通过数据的智能联网,可以创造最大的附加值。因此,确保机器跨制造商通信和工厂内测量结果顺利交换的接口标准越来越受到关注。如何最大限度地利用数据?2025年9月22日至26日举行的汉诺威EMO展会将为这一核心问题提供答案。在这一世界领先的生产技术展会上,参观者可以在“创新制造”的主题下,了解工业生产的最新趋势。 每台机器都会产生大量的数据。过去,这些数据被视为副产品,如今它们已成为不可或缺的原材料,能够帮助提高生产效率。因此,即使在技术人才短缺和国际竞争压力巨大的时期,制造企业也能确保获得决定性的竞争优势。此外,通过智能的数据利用,可以减少排放并提高生产的可持续性,以应对日益严格的监管挑战。 生产的“世界语言” 然而,只有在机器之间实现无障碍通信时,数据才能得到最佳利用。开放的接口标准OPC UA(开放平台通信统一架构)为联网工厂提供了这种“生产的世界语言”。OPC UA确保了机器和设备的互操作性,这些设备可以通过即插即用的方式根据需要连接和重组,且不受平台和制造商的限制。在全球范围内推广这一通用接口并支持其使用,是连接性倡议umati(通用机器技术接口)的核心任务。该倡议在国际展会上生动展示了联网的优势,使人们能够切实感受到其价值。 “OPC UA实现了不同机器和系统之间的互操作性,无论它们来自哪个制造商,”总部位于弗兰肯维斯特哈尔的测量技术专家Wenzel Group的首席数字官(CDO)Heiko Wenzel-Schinzer表示。“这为完全联网的生产奠定了基础,测量结果可以直接流入过程控制中。其优势在于:减少了错误源,加快了偏差反应时间,并提高了制造效率。” 识别趋势和模式 通过顺畅的数据交换,可以进行统计分析,识别数据中的趋势或模式,并从中得出优化制造流程的见解。一个具体的应用场景是生产中的刀具磨损监控。通过持续的测量和数据分析,可以及早发现产品质量的偏差。“这些数据直接流入统计模型,提供关于刀具最佳更换时间的精确预测——这减少了停机时间和材料浪费,”Wenzel-Schinzer解释道。他除了担任Wenzel Group的CDO外,还在梅泽堡应用科技大学的经济与信息科学系担任工商管理、商业咨询和流程管理教授。 然而,要使机器数据的工作产生有效结果,还需要克服一些障碍。“一个核心挑战是数据格式和协议的协调,以确保跨制造商的互操作性,”Wenzel-Schinzer表示。此外,在联网环境中安全处理敏感数据,特别是在网络安全方面,也是一个重要问题。此外,集成OPC UA等标准需要不同行业参与者之间的紧密合作。“这时,行业协会就发挥了作用,”Wenzel Group的首席数字官表示。该公司将在EMO展会上展示坐标测量机和齿轮测量设备。 另一个具体的应用案例是齿轮专家Klingelnberg的测量机器和设备之间的闭环系统。Klingelnberg总部位于贝尔吉施兰的胡克斯瓦根。Klingelnberg的软件开发总负责人Alexander Troska描述了这一过程:“磨床制造出具有所需质量的齿轮。由于刀具磨损,参数逐渐偏离。我们的精密测量机器定期对刚制造的工件进行测量,确定趋势并采取纠正措施。” 低频和高频数据 在Klingelnberg的齿轮磨床上,会捕获大量数据:低频状态数据、高频控制数据以及工艺设置。“我们将这些机器数据与齿轮的测量和测试结果结合在GearEngine中,这是Klingelnberg自有的平台,”Klingelnberg的数字化和虚拟化负责人Daniel Meuris补充道。这种数据整合可以在分析质量问题时提供关于因果关系的广泛知识。 Klingelnberg精密测量中心软件开发负责人Jan Häger解释说,要获得最佳结果,需要对整个制造和测量过程有深入的了解。“每个工件对质量、节拍时间和准备时间都有不同的要求。在数据分析中,经验和不同制造工艺的知识非常重要,”Häger表示。此外,人工智能如机器学习也已经投入使用。 标准化确保兼容性 在这里,生产机器和测量技术之间的顺畅数据交换也是重点。过去,Klingelnberg主要使用专有格式,其中一些已成为行业标准。如今,Klingelnberg正在逐步转向标准接口,如OPC UA umati。“这些标准接口帮助我们和客户长期保持接口的兼容性,”Häger表示。 在这一背景下,人工智能和数字孪生技术将带来巨大的飞跃。“人工智能和数字孪生将使未来数字工厂的生产效率显著提高,”Troska坚信。通过创建实际设备的虚拟副本,可以优化流程并及早发现潜在问题。“基于人工智能的系统能够实现精确的质量控制和自主生产。其结果是更高效、更灵活、更智能的工厂,能够快速适应不断变化的市场条件,”Troska表示。 (资讯来源:德国汉诺威EMO展官网)