谷歌Stitch是由谷歌实验室(Google Labs)推出的一款基于生成式AI的UI设计和前端代码生成工具。它利用Gemini 2.5 Pro模型的多模态能力,允许用户通过自然语言描述或上传草图、截图等视觉素材快速生成用户界面(UI)设计,并自动生成可运行的前端代码(如HTML、CSS、JavaScript)。
文本生成设计
图像生成设计
前端代码生成
Figma集成
多模式支持
标准模式(Standard Mode):基于Gemini Flash,适合快速生成和调整设计。
实验模式(Experimental Mode):基于Gemini 2.5 Pro,支持更复杂的图像识别和高质量设计生成。
设计师:快速生成设计原型,减少手动绘制时间。
开发者:直接获取前端代码,加速开发流程。
产品经理/创业者:无需设计背景,通过描述快速验证产品概念。
学生/新手:学习UI设计和前端开发的辅助工具。
目前处于Beta测试阶段,可免费使用,但部分高级功能可能有额度限制(如每月50次实验模式生成)。
仅支持英文输入,未来可能扩展多语言支持。
Stitch的推出标志着AI在UI设计领域的深度应用,大幅缩短了从创意到实现的时间,适合个人开发者、设计团队和教育场景。如需体验,可访问[Google Labs Stitch官网。
免责声明:本网站仅提供网址导航服务,对链接内容不负任何责任或担保。
17 小时前
命令优先,而非图形界面。

2 个月前
Gemini 3 标志着AI模型从“增量优化”向“范式转变”的重大跃进。

3 个月前
恒图科技是一家专注于数字创意视觉内容创作与人工智能技术融合的文化科技型企业。恒图科技(成都恒图科技有限责任公司)在数字视觉内容创作和人工智能领域具有全球影响力,尤其以其核心产品Fotor而闻名。 这里是公司及业务概览: 类别 详细信息 公司名称 成都恒图科技有限责任公司 成立时间 2009年 创始人/CEO 段江 公司定位 专注于视觉内容创作与人工智能融合创新的科技型企业 核心产品 Fotor (图片处理与设计软件)、Clipfly (AI视频制作平台) 技术核心 HDR(高动态范围图像)技术、生成式人工智能(AIGC) 市场与用户 覆盖全球200多个国家和地区,用户量约7-8亿,绝大部分为海外用户 主要荣誉 2025年福布斯中国人工智能科技企业TOP50、德勤中国高科技高成长50强 🚀 发展历程与核心优势 恒图科技的发展历程,是一部深耕技术、顺势而为的进化史。 技术奠基与出海:公司自成立起就专注于图像处理技术,尤其在HDR(高动态范围图像)技术领域拥有领先的核心专利。早期,团队就做出了一个关键决策:主攻海外市场,打造标准化的产品。其产品因操作简单、效果专业,迅速获得了海外用户的认可,BBC曾将Fotor誉为“Photoshop的后继者”。 拥抱AI浪潮:当生成式人工智能(AIGC)兴起时,恒图科技展现了强大的技术敏锐度和快速反应能力。他们在2022年10月就为Fotor上线了AI功能,并逐步将产品从单一的图片编辑,拓展为涵盖AI文生图、AI文生视频等超100种功能的一站式AI视觉内容创作平台。这不仅吸引了更多用户,也让他们成为国内为数不多在该领域实现规模化盈利的企业。 强大的技术合作:为了支撑全球海量用户的创作需求,恒图科技与火山引擎展开了深度合作。火山引擎为其提供了强大的AI算力保障,支撑了恒图超过80%的推理和训练任务。这一合作显著提升了其AI视频生成的能力与质量,帮助恒图实现了用户付费转化率提升23%、AI人均视频生成次数提升12%的亮眼成绩。 🛠️ 主要产品与应用 恒图科技的产品矩阵紧密围绕“让创作更简单”这一核心目标展开。 Fotor:这是恒图科技的旗舰产品。它不仅仅是一个修图工具,更是一个覆盖网页端、移动端和桌面端的一体化设计平台。通过引入AI技术,Fotor极大地降低了专业设计的门槛,让没有任何设计背景的普通用户也能轻松制作海报、社交媒体图片等。 Clipfly:这是恒图科技推出的一站式AI视频制作平台。它集成了文生视频、图生视频、自动字幕、视频编辑等功能,让一个人、一台电脑就能快速完成具有电影质感的视频创作,极大地降低了视频创作的成本和门槛。该产品在文旅宣传、内容创作等领域有很好的应用前景。 🌍 行业影响与未来前景 恒图科技的成功,不仅在于商业上的成就,更在于其带来的行业变革与文化价值。 推动创作“智能化”:恒图科技将自己定位为数字创意创作“智能化”的推动者。如果说Photoshop代表了“专业化”,Canva代表了“平民化”,那么Fotor的目标就是通过AI技术,将视觉内容创作带入“全民皆可为的智能化时代”。 架起文化出海桥梁:恒图科技的产品拥有庞大的海外用户群,这使其成为中国文化出海的一个独特渠道。通过Fotor、Clipfly等产品,中国传统的文化元素、IP可以以图像、视频等更易被接受的形式传播到全球,促进跨文化的交流与理解。 ( 图片来源:fotor.com.cn )

5 个月前
T5:Text-to-Text Transfer Transformer

10 个月前
谷歌大模型与人脑语言处理机制研究由谷歌研究院与普林斯顿大学、纽约大学等合作开展。3 月上旬,谷歌的研究成果表明大模型竟意外对应人脑语言处理机制。他们将真实对话中的人脑活动与语音到文本 LLM 的内部嵌入进行比较,发现两者在线性相关关系上表现显著,如语言理解顺序(语音到词义)、生成顺序(计划、发音、听到自己声音)以及上下文预测单词等方面都有惊人的一致性 研究方法:将真实对话中的人脑活动与语音到文本LLM的内部嵌入进行比较。使用皮层电图记录参与者在开放式真实对话时语音生成和理解过程中的神经信号,同时从Whisper中提取低级声学、中级语音和上下文单词嵌入,开发编码模型将这些嵌入词线性映射到大脑活动上。 具体发现 语言理解与生成顺序:在语言理解过程中,首先是语音嵌入预测沿颞上回(STG)的语音区域的皮层活动,几百毫秒后,语言嵌入预测布罗卡区(位于额下回;IFG)的皮层活动。在语言生成过程中,顺序则相反,先由语言嵌入预测布罗卡区的皮层活动,几百毫秒后,语音嵌入预测运动皮层(MC)的神经活动,最后,在说话者发音后,语音嵌入预测STG听觉区域的神经活动。这反映了神经处理的顺序,即先在语言区计划说什么,然后在运动区决定如何发音,最后在感知语音区监测说了什么。 神经活动与嵌入的关系:对于听到或说出的每个单词,从语音到文本模型中提取语音嵌入和基于单词的语言嵌入,通过估计线性变换,可以根据这些嵌入预测每次对话中每个单词的大脑神经信号。全脑分析的定量结果显示,在语音生成和语音理解过程中,不同脑区的神经活动与语音嵌入和语言嵌入的峰值存在特定的先后顺序和对应关系。 “软层次”概念:尽管大模型在并行层中处理单词,人类大脑以串行方式处理它们,但反映了类似的统计规律。大脑中较低级别的声学处理和较高级别的语义处理部分重叠,即存在“软层次”概念。例如,像IFG这样的语言区域不仅处理单词级别的语义和句法信息,也捕捉较低级别的听觉特征;而像STG这样的低阶语音区域在优先处理声学和音素的同时,也能捕捉单词级别的信息。 以往相关研究成果 2022年发表在《自然神经科学》上的论文显示,听者大脑的语言区域会尝试在下一个单词说出之前对其进行预测,且在单词发音前对预测的信心会改变在单词发音后的惊讶程度(预测误差),证明了自回归语言模型与人脑共有的起始前预测、起始后惊讶和基于嵌入的上下文表征等基本计算原理。 发表在《自然通讯》的论文发现,大模型的嵌入空间几何图形所捕捉到的自然语言中单词之间的关系,与大脑在语言区诱导的表征(即大脑嵌入)的几何图形一致。 后续研究还发现,虽然跨层非线性变换在LLMs和人脑语言区中相似,但实现方式不同。Transformer架构可同时处理成百上千个单词,而人脑语言区似乎是按顺序、逐字、循环和时间来分析语言。 总之,该研究表明,语音到文本模型嵌入为理解自然对话过程中语言处理的神经基础提供了一个连贯的框架,尽管大模型与人脑在底层神经回路架构上存在明显不同,但在处理自然语言时有着一些相似的计算原则。

11 个月前
BERT(Bidirectional Encoder Representations from Transformers)是由Google于2018年发布的一种预训练语言模型,基于Transformer架构,用于自然语言处理(NLP)任务。它的双向(Bidirectional)上下文理解能力使其在文本理解、问答系统、文本分类等任务中表现卓越。 BERT的核心特点 1. 双向上下文理解 传统语言模型(如GPT)通常是单向的(从左到右或从右到左)。 BERT采用Masked Language Model(MLM,掩码语言模型),即在训练过程中随机遮挡部分词语,并让模型根据上下文预测这些被遮挡的词,从而实现双向理解。 2. 预训练+微调(Pre-training & Fine-tuning) 预训练(Pre-training):在海量无标注文本数据(如维基百科、BooksCorpus)上进行训练,使BERT学会通用的语言知识。 微调(Fine-tuning):针对具体任务(如情感分析、问答系统、命名实体识别)进行轻量级训练,只需少量数据,即可获得良好效果。 3. 基于Transformer架构 BERT使用多层Transformer编码器,通过自注意力(Self-Attention)机制高效建模文本中的远程依赖关系。 Transformer结构相比RNN和LSTM,更适合并行计算,处理长文本能力更强。 BERT的两大核心任务 Masked Language Model(MLM,掩码语言模型) 在训练时,随机遮挡输入文本中的15%单词,让模型根据上下文预测这些词。 这种方法使BERT学习到更深层次的语言表示能力。 Next Sentence Prediction(NSP,下一句预测) 让模型判断两个句子是否是相邻句: IsNext(相关):句子A和B是原始文本中相连的句子。 NotNext(无关):句子B是随机选择的,与A无关。 这一任务有助于提高BERT在问答、阅读理解等任务中的能力。 BERT的不同版本 BERT-Base:12层Transformer(L=12)、隐藏层768维(H=768)、12个自注意力头(A=12),总参数110M。 BERT-Large:24层Transformer(L=24)、隐藏层1024维(H=1024)、16个自注意力头(A=16),总参数340M。 DistilBERT:更小更快的BERT变体,参数量约为BERT的一半,但性能接近。 RoBERTa:改进版BERT,去除了NSP任务,并采用更大数据量进行训练,提高了性能。 BERT的应用 BERT可以应用于多种NLP任务,包括: 文本分类(如垃圾邮件检测、情感分析) 命名实体识别(NER)(如人名、地名、组织识别) 阅读理解(QA)(如SQuAD问答) 文本摘要 机器翻译 搜索引擎优化(SEO)(Google已将BERT用于搜索算法) BERT的影响 推动NLP进入预训练时代:BERT的成功引发了NLP领域的“预训练+微调”范式(如GPT、T5、XLNet等)。 提升搜索引擎性能:Google 在搜索引擎中使用BERT,提高查询理解能力。 加速AI技术发展:BERT的开源推动了自然语言处理技术在学术界和工业界的广泛应用。 总结 BERT是Transformer架构的双向预训练模型,通过MLM和NSP任务学习通用语言知识,在NLP领域取得巨大突破。它的成功奠定了现代大模型预训练+微调的范式,被广泛用于搜索、问答、文本分类等任务。

1 年前
Gemini 1.0是为了组织和理解信息,Gemini 2.0则是为了让信息变得更有用。

1 年前
Google宣布了其新型量子计算芯片Willow,这是在量子计算领域长达十年的征程中迈出的重要一步!
Minimax(海螺AI)已由大模型名Minimax替换原海螺AI。现海螺AI为Minimax视频生成产品名。
海螺AI