近日来,ChatGPT及类似模型引发了人工智能(AI)领域的一场风潮。 这场风潮对数字世界产生了革命性影响。ChatGPT类模型具有惊人的泛用性,能够执行归纳、编程、翻译等任务,其结果与人类专家相当甚至更优。为了使ChatGPT等模型的训练和部署更轻松,AI 开源社区进行了各种尝试(例如 ChatLLaMa、Alpaca、Vicuna、Databricks-Dolly等)。
然而,尽管开源社区付出了巨大的努力,目前仍缺乏一个支持端到端的基于人工反馈机制的强化学习(RLHF)的规模化系统,这使得训练强大的类ChatGPT模型十分困难。例如,使用现有的开源系统训练一个具有 67 亿参数的类ChatGPT模型通常需要昂贵的多卡至多节点的 GPU 集群,但这些资源对大多数数据科学家或研究者而言难以获取。同时,即使有了这样的计算资源,现有的开源系统的训练效率通常还不到这些机器所能达到的最大效率的5%。简而言之,即使有了昂贵的多GPU集群,现有解决方案也无法轻松、快速、经济的训练具有数千亿参数的最先进的类ChatGPT模型。
ChatGPT模型的训练是基于InstructGPT论文中的RLHF方式。这与常见的大语言模型的预训练和微调截然不同。这使得现有深度学习系统在训练类ChatGPT模型时存在种种局限。
因此,为了让ChatGPT类型的模型更容易被普通数据科学家和研究者使用,并使RLHF训练真正普及到AI社区,我们发布了 DeepSpeed-Chat。DeepSpeed-Chat具有以下三大核心功能:
(i)简化 ChatGPT 类型模型的训练和强化推理体验:只需一个脚本即可实现多个训练步骤,包括使用 Huggingface 预训练的模型、使用 DeepSpeed-RLHF 系统运行 InstructGPT 训练的所有三个步骤、甚至生成你自己的类ChatGPT模型。此外,我们还提供了一个易于使用的推理API,用于用户在模型训练后测试对话式交互。
(ii)DeepSpeed-RLHF 模块:DeepSpeed-RLHF 复刻了 InstructGPT 论文中的训练模式,并确保包括a) 监督微调(SFT),b) 奖励模型微调和 c) 基于人类反馈的强化学习(RLHF)在内的三个步骤与其一一对应。此外,我们还提供了数据抽象和混合功能,以支持用户使用多个不同来源的数据源进行训练。
(iii)DeepSpeed-RLHF 系统:我们将 DeepSpeed 的训练(training engine)和推理能力(inference engine) 整合到一个统一的混合引擎(DeepSpeed Hybrid Engine or DeepSpeed-HE)中用于 RLHF 训练。DeepSpeed-HE 能够在 RLHF 中无缝地在推理和训练模式之间切换,使其能够利用来自 DeepSpeed-Inference 的各种优化,如张量并行计算和高性能CUDA算子进行语言生成,同时对训练部分还能从 ZeRO- 和 LoRA-based 内存优化策略中受益。DeepSpeed-HE 还能够自动在 RLHF 的不同阶段进行智能的内存管理和数据缓存。
DeepSpeed-RLHF 系统在大规模训练中具有无与伦比的效率,使复杂的 RLHF 训练变得快速、经济并且易于大规模推广:
高效性和经济性:DeepSpeed-HE 比现有系统快 15 倍以上,使 RLHF 训练快速且经济实惠。例如,DeepSpeed-HE 在 Azure 云上只需 9 小时即可训练一个 OPT-13B模型,只需 18 小时即可训练一个 OPT-30B模型。这两种训练分别花费不到 300 美元和 600 美元。
为了实现无缝的训练体验,我们遵循 InstructGPT 论文的方法,并在 DeepSpeed-Chat 中整合了一个端到端的训练流程,如图 1 所示。
图 1: DeepSpeed-Chat 的 RLHF 训练流程图示,包含了一些可选择的功能。
我们的流程包括三个主要步骤:
步骤1:监督微调(SFT) —— 使用精选的人类回答来微调预训练的语言模型以应对各种查询;
步骤2:奖励模型微调 —— 使用一个包含人类对同一查询的多个答案打分的数据集来训练一个独立的(通常比 SFT 小的)奖励模型(RW);
步骤3:RLHF 训练 —— 利用 Proximal Policy Optimization(PPO)算法,根据 RW 模型的奖励反馈进一步微调 SFT 模型。
在步骤3中,我们提供了两个额外的功能,以帮助提高模型质量:
指数移动平均(EMA) —— 可以选择基于 EMA 的检查点进行最终评估
混合训练 —— 将预训练目标(即下一个单词预测)与 PPO 目标混合,以防止在像 SQuAD2.0 这样的公开基准测试中的性能损失
这两个训练功能,EMA 和混合训练,常常被其他的开源框架所忽略,因为它们并不会妨碍训练的进行。然而,根据 InstructGPT,EMA 通常比传统的最终训练模型提供更好的响应质量,而混合训练可以帮助模型保持预训练基准解决能力。因此,我们为用户提供这些功能,以便充分获得 InstructGPT 中描述的训练体验,并争取更高的模型质量。
除了与 InstructGPT 论文高度一致外,我们还提供了一项方便的功能,以支持研究人员和从业者使用多个数据资源训练他们自己的 RLHF 模型:
数据抽象和混合能力: DeepSpeed-Chat 能够使用多个不同来源的数据集训练模型以获得更好的模型质量。它配备了(1)一个抽象数据集层,以统一不同数据集的格式;以及(2)数据拆分/混合功能,以便多个数据集在 3 个训练阶段中被适当地混合然后拆分。
在我们之前的章节中,你可以看到使用整个 DeepSpeed-Chat 训练模型在多轮对话中的表现。
DeepSpeed-Chat流程的前两步与大型模型的常规微调相似,得益于基于ZeRO的内存管理优化和DeepSpeed训练中的并行策略灵活组合,实现了规模和速度的提升。然而,流程的第三步在性能方面是最具挑战性的部分。每次迭代都需要高效处理两个阶段:a) 生成回答的推理阶段,为训练提供输入;b) 更新 actor 和 reward 模型权重的训练阶段,以及它们之间的交互和调度。这引入了两个主要困难:(1)内存成本,因为在第三阶段的整个过程中需要运行多个SFT和RW模型;(2)生成回答阶段的速度较慢,如果没有正确加速,将显著拖慢整个第三阶段。此外,我们在第三阶段中添加的两个重要可选功能,包括指数移动平均(EMA)收集和混合训练,将产生额外的内存和训练成本。
为了应对这些挑战,我们将DeepSpeed训练和推理的系统功能整合为一个统一的基础设施,称为混合引擎(Hybrid Engine)。它利用原始DeepSpeed引擎进行高速训练模式,同时轻松应用DeepSpeed推理引擎进行生成/评估模式,为第三阶段的RLHF训练提供了一个明显更快的训练系统。如图2所示,DeepSpeed训练和推理引擎之间的过渡是无缝的:通过为actor模型启用典型的eval和train模式,当运行推理和训练流程时,DeepSpeed选择其不同的优化来运行模型更快并提高整个系统吞吐量。
图2. 设计图解:DeepSpeed Hybrid Engine,用于加速 RLHF 流程中最耗时的部分。
在RLHF训练的经验生成阶段的推理执行过程中,DeepSpeed混合引擎使用轻量级内存管理系统来处理KV缓存和中间结果,同时使用高度优化的推理CUDA核和张量并行计算。与现有解决方案相比,DeepSpeed-HE显著提高了吞吐量(每秒token数)。
在训练执行过程中,混合引擎使用了多种内存优化技术,如DeepSpeed的ZeRO系列技术和现在流行的LoRA方法。这些技术在混合引擎中可以彼此兼容,并可以组合在一起以提供最高训练效率。
DeepSpeed-HE可以在训练和推理之间无缝更改模型分区,以支持基于张量并行计算的推理和基于ZeRO的分片机制进行训练。它还会重新配置内存系统以在此期间最大化内存可用性。DeepSpeed-HE还通过规避内存分配瓶颈和支持大批量大小来进一步提高性能。混合引擎集成了DeepSpeed训练和推理的一系列系统技术,突破了现有RLHF训练的极限,并为RLHF工作负载提供了无与伦比的规模和系统效率。
如前所述,DeepSpeed-HE 是一个将强大的用于推理和训练的结合系统,旨在使 DeepSpeed-RLHF 在各种硬件上实现卓越的规模和效率,使 RLHF 训练快速、经济并且易于 AI 社区使用。
在效率和经济性方面,DeepSpeed-HE 在 Azure 云上只需 9 小时即可训练一个OPT-13B模型,只需 18 小时既可训练 OPT-30B模型,分别花费不到 300 美元和 600 美元。在速度和可扩展性方面,即使是 13B 的模型也可以在 1.25 小时内训练,而庞大的 175B 模型可以在不到一天的时间内使用 64 个 GPU 集群进行训练。在 RLHF 的可访问性和普及化方面,DeepSpeed-HE 可以在单个 GPU 上训练超过 130 亿参数的模型。
DeepSpeed-HE 的核心技术基于 ZeRO,用于训练过程中将模型状态分割到每个GPU上。这意味着随着 GPU 数量的增加,每个 GPU 的内存消耗会减少,使得 DeepSpeed-HE 能够在每个 GPU 上支持更大的批量,从而实现超线性扩展。
扩展阅读请参考:https://github.com/microsoft/DeepSpeed/tree/master/blogs/deepspeed-chat
2 天前
OpenAI在2025年4月29日为ChatGPT添加了购物功能。以下是具体信息: 运作方式 这一购物功能深度整合了第三方供应商的产品数据以及合作伙伴的实时内容。用户能够通过自然语言对话完成产品价格比较、个性化推荐以及直接购买。例如,输入“我需要一个用于露营的轻便帐篷,预算为500美元”,ChatGPT就会列出符合条件的产品,并附上价格比较链接、用户评价以及购买入口,还会自动调用合作电商平台的库存信息。 产品类别 目前,该功能仅适用于有限的一些产品类别,包括电子产品、时尚产品、美妆产品和家居用品。OpenAI计划在未来扩展到更多类别。 用户群体 该功能最初向ChatGPT Plus和团队订阅用户开放,未来将逐步扩展到免费用户。 特色之处 个性化体验:它不像传统搜索那样基于关键词匹配,而是侧重于理解用户的评价和讨论,分析产品的优缺点,并提供个性化推荐。例如,如果用户表明偏好从特定零售商处购买黑色衣服,ChatGPT会记住这一点,并相应地推荐相关产品。 无付费广告:OpenAI强调产品结果是独立挑选的,并非广告或赞助内容。该公司不会从交易中获利。 此外,OpenAI还为ChatGPT搜索添加了诸如改进引用、热门话题、自动补全以及WhatsApp搜索等新功能,进一步提升了用户体验。
20 天前
📢 OpenAI即将发布GPT-4.1,多模态能力再升级! 据多家科技媒体报道,OpenAI计划于下周(2025年4月中旬)推出GPT-4.1,作为GPT-4o的升级版本,进一步强化多模态推理能力,并推出轻量级mini和nano版本。 🔍 关键升级点 更强的多模态处理 GPT-4.1将优化对文本、音频、图像的实时处理能力,提升跨模态交互的流畅度。 相比GPT-4o,新模型在复杂推理任务(如视频理解、语音合成等)上表现更优。 轻量化版本(mini & nano) GPT-4.1 mini 和 nano 将面向不同应用场景,降低计算资源需求,适合移动端或嵌入式设备。 配套新模型(o3 & o4 mini) OpenAI还将推出o3推理模型(满血版)和o4 mini,优化特定任务性能。 部分代码已在ChatGPT网页端被发现,表明发布临近。 ⏳ 发布时间与不确定性 原定下周发布,但OpenAI CEO Sam Altman 曾预警可能因算力限制调整计划。 同期,ChatGPT已升级长期记忆功能,可回顾用户历史对话,提供个性化服务(Plus/Pro用户已开放)。 🌍 行业影响 谷歌(Gemini AI)和微软(Copilot)近期也强化了AI记忆功能,竞争加剧。 GPT-4.1可能进一步巩固OpenAI在多模态AI领域的领先地位,推动商业应用(如智能客服、内容创作等)。 📌 总结:GPT-4.1的发布标志着OpenAI在多模态AI上的又一次突破,但具体性能提升和落地效果仍需观察。我们将持续关注官方更新! (综合自腾讯新闻、The Verge、搜狐等)
2 个月前
BERT(Bidirectional Encoder Representations from Transformers)是由Google于2018年发布的一种预训练语言模型,基于Transformer架构,用于自然语言处理(NLP)任务。它的双向(Bidirectional)上下文理解能力使其在文本理解、问答系统、文本分类等任务中表现卓越。 BERT的核心特点 1. 双向上下文理解 传统语言模型(如GPT)通常是单向的(从左到右或从右到左)。 BERT采用Masked Language Model(MLM,掩码语言模型),即在训练过程中随机遮挡部分词语,并让模型根据上下文预测这些被遮挡的词,从而实现双向理解。 2. 预训练+微调(Pre-training & Fine-tuning) 预训练(Pre-training):在海量无标注文本数据(如维基百科、BooksCorpus)上进行训练,使BERT学会通用的语言知识。 微调(Fine-tuning):针对具体任务(如情感分析、问答系统、命名实体识别)进行轻量级训练,只需少量数据,即可获得良好效果。 3. 基于Transformer架构 BERT使用多层Transformer编码器,通过自注意力(Self-Attention)机制高效建模文本中的远程依赖关系。 Transformer结构相比RNN和LSTM,更适合并行计算,处理长文本能力更强。 BERT的两大核心任务 Masked Language Model(MLM,掩码语言模型) 在训练时,随机遮挡输入文本中的15%单词,让模型根据上下文预测这些词。 这种方法使BERT学习到更深层次的语言表示能力。 Next Sentence Prediction(NSP,下一句预测) 让模型判断两个句子是否是相邻句: IsNext(相关):句子A和B是原始文本中相连的句子。 NotNext(无关):句子B是随机选择的,与A无关。 这一任务有助于提高BERT在问答、阅读理解等任务中的能力。 BERT的不同版本 BERT-Base:12层Transformer(L=12)、隐藏层768维(H=768)、12个自注意力头(A=12),总参数110M。 BERT-Large:24层Transformer(L=24)、隐藏层1024维(H=1024)、16个自注意力头(A=16),总参数340M。 DistilBERT:更小更快的BERT变体,参数量约为BERT的一半,但性能接近。 RoBERTa:改进版BERT,去除了NSP任务,并采用更大数据量进行训练,提高了性能。 BERT的应用 BERT可以应用于多种NLP任务,包括: 文本分类(如垃圾邮件检测、情感分析) 命名实体识别(NER)(如人名、地名、组织识别) 阅读理解(QA)(如SQuAD问答) 文本摘要 机器翻译 搜索引擎优化(SEO)(Google已将BERT用于搜索算法) BERT的影响 推动NLP进入预训练时代:BERT的成功引发了NLP领域的“预训练+微调”范式(如GPT、T5、XLNet等)。 提升搜索引擎性能:Google 在搜索引擎中使用BERT,提高查询理解能力。 加速AI技术发展:BERT的开源推动了自然语言处理技术在学术界和工业界的广泛应用。 总结 BERT是Transformer架构的双向预训练模型,通过MLM和NSP任务学习通用语言知识,在NLP领域取得巨大突破。它的成功奠定了现代大模型预训练+微调的范式,被广泛用于搜索、问答、文本分类等任务。
2 个月前
如何整合大模型API并提供开发者服务 随着人工智能技术的快速发展,越来越多的开发者希望在自己的应用中集成AI能力,如自然语言处理、图像生成、语音识别等。如果你计划搭建一个AI平台,并向开发者(B2C)提供AI API服务,那么本文将详细介绍如何整合现有大模型的API,并成为官方分销商。 1. 选择合适的大模型API 当前市场上已有多个强大的AI大模型提供API服务,以下是几家主流供应商: OpenAI(ChatGPT/GPT-4):适用于通用对话、文本生成、代码补全等。 Anthropic(Claude):擅长安全对话和长文本理解。 Google Gemini(原Bard):适合多模态(文本、图像)AI应用。 Mistral AI:提供高效、开源的AI模型,适合灵活集成。 Hugging Face:开放API,可用于多种NLP任务。 Stable Diffusion/DALL·E:用于图像生成。 Whisper API:优秀的语音识别能力。 选择API时,需要考虑成本、调用限制、商业许可、模型能力等因素。 2. 如何获得大模型API的分销权限? 如果你希望不仅是API的用户,还能将API分发给开发者,需要与AI公司建立更深层次的合作关系。不同公司有不同的合作方式: OpenAI(ChatGPT/GPT-4) 标准API使用:直接在OpenAI官网注册并获取API Key。 企业级API访问:通过 OpenAI Enterprise 申请更高额度的API。 成为OpenAI API Reseller(API分销商):需要直接联系OpenAI商务团队(sales@openai.com)并提供业务计划,通常要求较大的流量或消费额度。 Anthropic(Claude) 访问 Anthropic API 并申请企业合作。 需要提供详细的业务应用场景,并确保数据安全合规。 直接联系 sales@anthropic.com 申请API分销权限。 Google Gemini(原Bard) 使用 Google AI Studio 获取API。 申请Google Cloud AI企业级API,并与Google商务团队合作。 通过 Google Cloud AI Solutions 申请大规模API使用权限。 Mistral AI 访问 Mistral API 并申请企业级合作。 直接联系 Mistral 商务团队申请API分销许可。 Hugging Face 访问 Hugging Face Inference API。 联系 Hugging Face 申请企业API许可,并可能合作进行API优化。 3. 技术架构:如何整合多个API? 如果你希望提供一个集成多个AI API的服务平台,你需要构建一个API管理系统,包括: (1)API网关与管理 API网关(API Gateway):使用 Kong、AWS API Gateway、Apigee 统一管理所有API。 身份认证(Authentication):使用 JWT Token 或 OAuth2 进行用户管理。 负载均衡与缓存:结合 Redis 或 Cloudflare 优化API请求速度。 (2)用户管理与计费系统 API密钥管理:允许用户注册并申请API Key。 调用监控与限流:防止滥用,确保稳定性。 计费系统:使用 Stripe、PayPal 提供按量计费或订阅计划。 (3)前端支持与开发者体验 API文档:使用 Swagger UI 或 Redoc 提供清晰的API说明。 SDK支持:开发 Python/Node.js SDK 方便开发者集成。 在线测试环境:允许开发者在Web端试用API调用。 4. 商业模式:如何盈利? 如果你计划向开发者提供API服务,可以采用以下盈利模式: (1)免费+付费模式 提供 免费调用额度(如每月100次),超出后按量付费。 按不同模型提供不同的价格(GPT-4 高级版 vs GPT-3.5 免费版)。 (2)订阅模式 个人套餐:低价格,适合独立开发者。 企业套餐:支持高并发调用,并提供专属API密钥。 定制服务:为大型企业或团队提供专属AI API。 (3)增值服务 提供高优先级的API访问,减少延迟。 允许用户定制API模型参数,提高个性化。 结合其他工具,如AI自动化工作流、数据分析等。 5. 未来展望 随着AI技术的普及,越来越多的开发者希望将大模型能力集成到他们的产品中。如果你能整合多个AI API,并提供易用的开发者服务,将能在这一市场获得先机。通过与OpenAI、Anthropic、Google等公司建立合作,并搭建高效的API管理系统,你可以打造一个强大的AI API分发平台,为全球开发者提供优质的AI服务。 如果你有意向进入这一领域,不妨立即申请各大AI公司的企业级API,并开始搭建你的API分发平台!
2 个月前
Scaling Law 在人工智能领域的解释 Scaling Law(缩放定律)是人工智能(AI)领域中的一个核心概念,用于描述模型性能如何随着模型规模(如参数数量)、数据集大小和计算资源的增加而变化。这一规律通常遵循幂律关系,即模型性能随规模的增长呈指数或幂次提升,但提升速度会逐渐放缓并趋于上限。 核心概念 模型规模:包括模型的参数数量、层数等。例如,GPT系列模型通过不断增加参数数量实现了性能的显著提升。 数据集大小:训练数据的规模对模型性能有直接影响。更大的数据集通常能带来更好的泛化能力。 计算资源:包括训练所需的计算量(如GPU/TPU资源)和时间。计算资源的增加可以加速训练过程并提升模型性能。 幂律关系 Scaling Law 的核心是幂律关系,即模型性能 ( Y ) 与模型规模 ( X ) 的关系可以表示为 ( Y = kX^n ),其中 ( k ) 为常数,( n ) 为幂指数。例如,腾讯的 Hunyuan-Large 模型的 Scaling Law 公式为 ( C \approx 9.59ND + 2.3 \times 10^8D ),揭示了模型性能与参数数量和数据量的关系。 实践意义 资源优化:通过 Scaling Law,研究人员可以预测增加模型规模或计算资源是否能够带来显著的性能提升,从而优化资源配置。 模型设计:Scaling Law 为大规模模型的设计提供了理论支持,例如 OpenAI 的 GPT 系列和百度的 MoE 模型。 性能预测:帮助研究人员在资源有限的情况下,平衡模型规模、数据量和计算资源,以达到最佳性能。 应用实例 GPT 系列:OpenAI 通过系统性地增加模型规模,展示了 Scaling Law 在实践中的有效性。 Hunyuan-Large:腾讯的开源 MoE 模型,其 Scaling Law 公式为模型开发提供了重要指导。 迁移学习:斯坦福大学和谷歌的研究表明,预训练数据集大小与下游任务性能之间的关系也遵循 Scaling Law。 挑战与未来方向 数据资源枯竭:随着互联网数据的接近枯竭,Scaling Law 面临数据不足的挑战。 算法创新:当前 Transformer 架构的局限性促使研究人员探索更高效的算法,如 DeepSeek-R1-Zero 通过强化学习实现了突破。 新范式探索:Scaling Law 正在向后训练和推理阶段转移,研究重点从单纯追求规模转向优化数据质量和挖掘模型潜力。 结论 Scaling Law 是 AI 领域的重要理论工具,为大规模模型的设计和优化提供了科学依据。尽管面临数据资源和算法创新的挑战,但其在推动 AI 技术进步中的作用不可替代。未来,随着研究的深入,Scaling Law 的应用将更加精细化和多样化。
2 个月前
2月18日,阶跃星辰联合吉利汽车集团开源了两款阶跃Step系列多模态大模型——Step - Video - T2V视频生成模型和Step - Audio语音模型,采用MIT协议,支持免费商用、任意修改和衍生开发。 两款模型的具体信息如下: Step - Video - T2V 参数与生成能力:参数量达到300亿,可以直接生成204帧、540P分辨率的高质量视频,能确保生成的视频内容具有极高的信息密度和强大的一致性。 生成效果优势:在复杂运动、美感人物、视觉想象力、基础文字生成、原生中英双语输入和镜头语言等方面具备强大的生成能力,且语义理解和指令遵循能力突出。对复杂运动场景把控能力强,能展现各种高难度运动画面;是运镜大师,支持多种镜头运动方式和景别切换;像“十级画师”,生成的人物形象逼真、生动,细节丰富,表情自然。 评测情况:阶跃星辰发布并开源了针对文生视频质量评测的新基准数据集Step - Video - T2V - Eval。评测结果显示,Step - Video - T2V的模型性能在指令遵循、运动平滑性、物理合理性、美感度等方面的表现,均显著超过市面上既有的效果最佳的开源视频模型。 Step - Audio 功能特性:是行业内首个产品级的开源语音交互模型,能够根据不同的场景需求生成情绪、方言、语种、歌声和个性化风格的表达,能和用户自然地进行高质量对话。可支持不同角色的音色克隆,满足影视娱乐、社交、游戏等行业场景下应用需求。 模型性能:在LlaMA Question、Web Questions等5大主流公开测试集中,模型性能均超过了行业内同类型开源模型,位列第一。在HSK - 6(汉语水平考试六级)评测中的表现尤为突出,被称为最懂中国话的开源语音交互大模型。阶跃星辰自建并开源了多维度评估体系StepEval - Audio - 360基准测试,经人工横评后,Step - Audio的模型能力均衡,在各个维度上均超过了此前市面上效果最佳的开源语音模型。
2 个月前
随着DeepSeek-R1的出现,相较于以往的大模型,带来了更先进的语义理解和数据处理能力,AI技术迎来了新的里程碑。喆塔科技作为国产领先的数智化平台领跑者,其“喆学大模型”通过融合行业Know-How与AI、大数据和云计算技术,在良率提升、效率优化及成本控制方面已取得显著成效。 Zeta科技宣布喆学模型接入R1模型 DeepSeek-R1的接入,“喆学大模型”能够更精准地分析复杂工业数据,提前预测设备故障,并提供科学决策建议,优化资源利用。这一结合为半导体、光电显示、新能源等高端制造行业注入了新的变革力量,帮助企业在这个竞争激烈的时代中保持领先。 接入DeepSeek-R1以后,喆学大模型显著增强了其在智能问答、决策支持、自我进化、易用性和垂直应用开发等方面的能力。这一创新不仅大幅降低了企业的学习门槛和技术障碍,还显著提升了工作效率和准确性,为企业实现更高效的生产和管理提供了强有力的支持。通过将复杂的数据转化为可操作的见解,并为决策提供科学依据,喆学大模型帮助企业应对工业AI时代的挑战,推动其实现数字化、智能化转型的新飞跃。 这些应用场景大模型智能问答超便捷: 工程师在工作中遇到困难,只要输入问题,就能马上得到详细的答案,它能为你画图表、做分析、写报告就像身边随时有个百事通,工作效率想不高都难。 良率分析小助手:紧盯分析数据,多轮智能问答,智能问答出图,快速给出建议,节省繁琐、重复操作步骤,提升分析效率。 Text2SQL真方便:业务人员不用再费劲去学复杂的 SQL 语言了,轻松就能查询数据,工作变得更轻松。 智能 BI 很直观:它能把业务数据深度分析,还能以可视化的形式呈现出来,市场预测和策略建议都能精准给出,企业发展更有方向。 例如: 在半导体行业,面对复杂良率分析和新员工上手难的问题,喆塔科技提供了融合喆学大模型与自动良率分析的解决方案。通过智能问答模块,新手能快速掌握分析流程和数据获取;指令生成功能依据用户偏好一键创建图表,简化操作;智能根因分析则迅速定位良率问题并提供决策支持。 (信息来源:芯湃资本)
2 个月前
结合DeepSeek R1和ChatGPT的合并使用,理论上可以通过互补优势提升整体性能,但实际效果取决于具体实现方式、任务类型及资源优化能力。以下是综合分析: 一、合并使用的潜在优势 任务性能互补 DeepSeek R1的优势: 逻辑推理与效率:基于混合专家(MoE)架构,R1在数学推理、代码生成和复杂逻辑分解任务中表现突出,例如在数学竞赛中准确率超过GPT-4o,且生成代码时能快速整合异常处理机制。 成本效益:训练成本仅为ChatGPT的十分之一,运行时能耗低23%,适合长期高负载任务。 ChatGPT的优势: 通用性与创造力:在创意写作、多模态任务(支持图像输入)和用户交互体验上更具优势,例如生成广告文案或设计多幕式剧本结构。 互补场景: R1处理技术性分解(如代码框架生成),ChatGPT优化最终输出(如代码注释和用户界面设计)。 增强输出多样性 通过多模型集成(如投票机制或加权融合),可生成更全面的答案。例如,R1提供结构化逻辑步骤,ChatGPT补充自然语言解释,适用于教育和复杂问题解答场景。 风险分散与容错性 若某一模型在特定领域表现不稳定(如R1可能混淆多义词语境,而ChatGPT在长文本生成中易重复观点),合并使用可通过交叉验证减少错误率。 二、可行的合并实现方式 任务路由(Task Routing) 根据任务类型动态分配模型: 技术任务(如编程、数学证明)优先调用R1; 创意任务(如文案生成、对话设计)优先调用ChatGPT。 支持工具:通过开源框架(如Modular MAX平台或Ollama)实现模型动态切换。 混合生成(Hybrid Generation) 结合两者的输出,例如: R1生成代码框架,ChatGPT添加注释和用户交互逻辑; ChatGPT生成创意文案初稿,R1优化逻辑结构和数据准确性。 强化学习优化 利用用户反馈数据,训练一个“调度模型”自动选择最佳输出或调整权重。例如,在客服场景中,R1处理技术投诉,ChatGPT生成情感化回复。 三、挑战与限制 资源与成本压力 同时运行两个大型模型需要更高的计算资源,尤其是ChatGPT的密集参数架构可能增加部署成本。 输出一致性难题 两者的响应风格差异显著(R1结构化、ChatGPT对话式),需额外设计后处理模块统一输出格式。 调优复杂度 需平衡模型间的权重分配,例如在代码生成任务中,R1的快速生成与ChatGPT的调试建议需协调优先级。 四、实际应用案例参考 DeepClaude项目 类似思路:通过集成DeepSeek R1与Claude 3.5 Sonnet,结合前者的推理能力和后者的创造力,在跨语言编程任务中达到64%的新SOTA成绩。 开源替代方案 使用Browser Use工具链,将R1与ChatGPT的API结合,构建支持Web自动化和多步问题解决的AI代理,成本仅为专有方案的10%。 五、结论与建议 合并使用DeepSeek R1和ChatGPT在技术可行性和性能提升潜力上具备显著优势,尤其适合需要兼顾逻辑严谨性与创意灵活性的场景(如教育、企业级应用)。 但需注意: 优先场景:复杂技术问题解答、多模态任务协作、长流程自动化; 规避场景:单一领域任务(如纯创意写作)或资源受限环境。 若需实际部署,建议参考开源工具链(如Ollama或Modular MAX)进行初步验证,再逐步优化集成策略。
2 个月前
2月10日,清华大学KVCache.AI团队联合趋境科技发布的KTransformers开源项目公布更新:一块24G显存的4090D,就可以在本地运行DeepSeek-R1、V3的671B“满血版”。 预处理速度最高达到286 tokens/s,推理生成速度最高能达到14 tokens/s。 KTransformers通过优化本地机器上的LLM部署,帮助解决资源限制问题。该框架采用了异构计算、先进量化技术、稀疏注意力机制等多种创新手段,提升了模型的计算效率,并具备处理长上下文序列的能力。
2 个月前
OpenAI 对 GPT-5 的愿景集中于创建一个“统一智能”系统,无缝整合多种 AI 功能。这种方法旨在消除用户在不同模型之间进行选择的需求,而是提供一个单一且强大的 AI,能够轻松处理各种任务。主要目标包括: 将语音交互、画布操作、搜索功能和深度研究能力等高级功能整合到一个统一的系统中。 增强自然语言处理和推理能力,以在特定任务中实现“博士级智能”。 改进多模态处理,更好地理解和生成基于文本、图像以及可能的视频的响应。 扩展上下文窗口,以便处理和记住来自先前交互的更多信息。 简化用户体验,通过移除模型选择器并在不同订阅层级中提供不同的智能水平。 链式思维模型的介绍 OpenAI 即将推出的 GPT-5 预计将引入先进的链式思维(CoT)能力,大幅提升其推理和解决问题的能力。这个新模型可能会具备改进的多模态处理功能,整合文本、图像,甚至可能包括视频输入。Sam Altman 暗示,GPT-5 将展现出更好的推理能力,犯错更少,并且输出更加可靠。这些 CoT 提示的进步旨在通过结构化的思维过程引导 AI,将复杂任务分解为可管理的步骤,从而生成更准确和连贯的响应。 增强的多模态处理能力 GPT-5 将通过增强的多模态处理能力彻底改变人工智能交互,这是 Sam Altman 强调的一个关键重点。这一进步将使模型能够无缝集成文本、图像、音频和视频的输入和输出。主要功能包括: 语音到语音功能,实现更自然的对话交互。 改进的图像处理和生成,基于之前集成的成功经验。 视频支持,标志着人工智能在理解和生成视听内容方面的重大飞跃。 多种数据类型的统一处理,创造更统一且具有上下文感知的人工智能体验。 这些改进预计将为人工智能在各个行业的应用打开新的可能性,从创意内容生成到医疗和教育等领域更复杂的问题解决。