GraphRAG 是一种结构化的分层检索增强生成 (RAG) 方法,而不是朴素的语义搜索 使用纯文本片段的方法。GraphRAG 过程涉及从原始文本中提取知识图谱,构建社区层次结构,为这些社区生成摘要,然后在执行基于 RAG 的任务时利用这些结构。
也许LLM最大的挑战和机遇是扩展他们强大的能力,以解决他们所训练的数据之外的问题,并使用LLM从未见过的数据获得可比的结果。这为数据调查开辟了新的可能性,例如根据上下文和数据集来识别主题和语义概念。在这篇文章中,我们介绍了由Microsoft研究院创建的GraphRAG,作为增强LLM能力的重大进步。
GraphRAG 与基线 RAG ?
检索增强生成 (RAG) 是一种基于用户查询搜索信息并将结果作为要生成的 AI 答案的参考的技术。这种技术是大多数基于 LLM 的工具的重要组成部分,大多数 RAG 方法都使用向量相似性作为搜索技术。GraphRAG 使用 LLM 生成的知识图谱,在对复杂信息进行文档分析时,大幅提高问答性能。这建立在我们最近的研究基础上,该研究指出了在私有数据集上执行发现时提示增强的力量。在这里,我们将私有数据集定义为 LLM 未接受过训练且以前从未见过的数据,例如企业的专有研究、业务文档或通信。基线 RAG的创建是为了帮助解决这个问题,但我们观察到基线 RAG 表现非常差的情况。例如:
为了解决这个问题,技术社区正在努力开发扩展和增强 RAG 的方法(例如,骆驼指数).Microsoft Research的新方法GraphRAG使用LLM创建基于私有数据集的知识图谱。然后,此图形与图形机器学习一起使用,以在查询时执行提示增强。GraphRAG 在回答上述两类问题方面表现出实质性的改进,展示了比以前应用于私有数据集的其他方法更出色的智力或掌握能力。
为了解决这个问题,技术社区正在努力开发扩展和增强RAG的方法。Microsoft Research的新方法GraphRAG使用LLM创建基于输入语料库的知识图谱。此图以及社区摘要和图形机器学习输出用于在查询时增强提示。GraphRAG 在回答上述两类问题方面表现出实质性的改进,展示了比以前应用于私有数据集的其他方法更出色的智力或掌握能力。
通过结合 LLM 生成的知识图谱和图形机器学习,GraphRAG 使我们能够回答仅使用基线 RAG 无法尝试的重要问题类别。在将这项技术应用于各种场景后,我们看到了有希望的结果,包括社交媒体和新闻文章。展望未来,我们计划在各种新领域与客户密切合作,同时继续应用这项技术,同时致力于指标和稳健的评估。
资讯来源:Microsoft Research Blog
1 个月前
2025年3月31日,在2025年汉诺威工业博览会上,一台罗尔斯-罗伊斯(Rolls-Royce)的飞机发动机被展示在微软的展台上。这家发动机制造商利用微软的人工智能技术进行数据管理和数据分析。 人工智能(AI)是汉诺威工业展2025年的核心主题。这场全球最重要的工业博览会将于3月31日至4月4日在德国汉诺威举行,届时将展示人工智能如何为工业带来革命性变革。以下是为何这一年对工业界如此重要的原因。 人工智能成为竞争力的关键 人工智能不再是科幻电影中的概念,而是已成为工业领域的现实。2025年的汉诺威工业展将展示人工智能如何通过优化生产流程、提升效率和推动创新来增强企业的竞争力。例如,人工智能助手可以支持工厂车间的日常工作,而基于数据的预测性维护则能减少停机时间。 微软等科技巨头将在展会上展示其最新的人工智能解决方案。例如,微软推出的“工厂运营代理”(Factory Operations Agent)是一种人工智能助手,旨在优化工厂车间的流程。它能让工人通过自然语言查询分析机器数据,帮助管理者改进生产过程并快速识别和解决问题。 一项调查显示,82%的企业认为人工智能对德国工业的竞争力至关重要。然而,46%的企业担心德国工业可能会错过人工智能革命的机遇。这使得2025年的汉诺威工业展成为展示最新技术并推动其实施的关键平台。 加拿大作为伙伴国:人工智能与可持续发展的结合 2025年的伙伴国是加拿大,该国以“未来已来”(The future's here)为主题,展示其在自动化、能源、数字化转型和绿色技术领域的优势。加拿大拥有超过200家参展企业,致力于推动绿色、数字化和可持续的工业未来。人工智能在其中扮演着重要角色,例如通过优化能源使用和支持可再生能源技术实现更可持续的生产方式。 加拿大财政部长弗朗索瓦-菲利普·尚帕涅(François-Philippe Champagne)表示:“我们很高兴能继续国际合作,并在汉诺威工业展上展示超过200家代表绿色、数字化和可持续未来的加拿大企业。”这不仅加强了德加之间的经济联系,也为全球工业的未来发展指明了方向。 人工智能的具体应用 汉诺威工业展2025将展示人工智能在工业中的多种实际应用,包括: 自动化和机器人技术:人工智能驱动的自主机器人能够执行复杂任务,提高生产效率。 预测性维护:通过分析机器数据,人工智能可以预测潜在故障,从而减少意外停机。 质量控制:人工智能系统可以通过图像识别技术快速检测产品缺陷。 供应链优化:人工智能帮助企业更好地管理库存和物流,降低成本。 这些应用不仅提高了效率,还为中小企业提供了利用尖端技术的机会。展会上还将特别设立面向中小企业的展区,展示专为这一群体设计的可负担的人工智能解决方案。 人工智能的挑战与机遇 尽管人工智能潜力巨大,但其推广也面临挑战。例如,数据隐私和人工智能系统的透明度问题引起了广泛关注。欧盟即将推出的《人工智能法案》(AI Act)将为人工智能的使用设定严格标准,这可能会影响其在欧洲的推广速度。 与此同时,人工智能也带来了巨大机遇。它不仅能提升生产力,还能加速新产品和服务的开发。例如,在制药行业,人工智能可以缩短药物研发时间,从而更快地将新药推向市场。 汉诺威工业展:通往未来的桥梁 汉诺威工业展不仅是技术的展示平台,也是全球工业界交流的中心。超过4000家来自60多个国家的参展商将在展会上展示他们的创新成果。今年的展会预计将吸引超过13万名观众,与2023和2024年的参观人数相当。 对于德国工业而言,2025年可能是决定性的一年。人工智能的广泛应用可能标志着工业4.0的新阶段,即通过数字化和智能化实现更高效、更可持续的生产方式。正如微软德国公司总经理艾格尼丝·赫夫特伯格(Agnes Heftberger)所言:“人工智能已走出试验阶段,正在工业中大规模应用。” 结语 汉诺威工业展2025将是人工智能在工业中全面展示其潜力的一年。从优化生产到推动可持续发展,人工智能正在改变工业的面貌。对于企业来说,这既是挑战也是机遇——抓住这一趋势的企业将在未来占据领先地位。 (资讯:德国商报;图片:Julian Stratenschulte/dpa)
1 个月前
人工智能是汉诺威工业展上的主导主题 微软正在推出创新助手,旨在显著简化工厂的工作流程。在近日开幕的2025汉诺威工业博览会上,微软展示了可广泛应用于工业领域的具有人工智能的创新虚拟助手。该软件公司在此次展会上展示的新产品之一是“工厂运营代理”(Factory Operations Agent)。 据该公司介绍,这是一个人工智能助手,旨在优化工厂车间的流程。例如,该解决方案使工人能够通过使用自然语言查询来分析机器的数据。 “负责任的经理”将能够优化制造流程。人工智能助手还可以比以前更轻松地识别错误来源并解决问题。 微软德国公司董事总经理阿格尼丝·赫夫伯格在汉诺威工业博览会开幕式上表示,人工智能已经走出了测试和实验阶段,正在工业领域得到广泛应用。 “我们必须毫不犹豫地引入人工智能,否则德国将在国际竞争中落后。我们必须让数据宝藏为人工智能所用。” 德国人工智能已经存在 根据德国数字协会Bitkom的一项代表性调查,42%的德国工业企业已经在生产中使用人工智能,另有三分之一(35%)有相应计划。其中包括机器的监控、机器人和车辆的控制以及能源消耗的优化:这项调查是在德国 552 家拥有 100 名或更多员工的工业制造公司中进行的。82%的公司认同人工智能的使用对于德国工业的竞争力至关重要。 然而,近一半(46%)的人认为德国工业界可能会错过人工智能革命。微软与谷歌、Meta、亚马逊并列成为全球领先的人工智能系统提供商,部分原因是微软首席执行官萨蒂亚·纳德拉早期投资数十亿美元与加州人工智能初创公司OpenAI及其开发的聊天机器人ChatGPT进行全面合作。 (资讯来源: tagesschau.de, 图片来源: heise.de)
1 个月前
谷歌大模型与人脑语言处理机制研究由谷歌研究院与普林斯顿大学、纽约大学等合作开展。3 月上旬,谷歌的研究成果表明大模型竟意外对应人脑语言处理机制。他们将真实对话中的人脑活动与语音到文本 LLM 的内部嵌入进行比较,发现两者在线性相关关系上表现显著,如语言理解顺序(语音到词义)、生成顺序(计划、发音、听到自己声音)以及上下文预测单词等方面都有惊人的一致性 研究方法:将真实对话中的人脑活动与语音到文本LLM的内部嵌入进行比较。使用皮层电图记录参与者在开放式真实对话时语音生成和理解过程中的神经信号,同时从Whisper中提取低级声学、中级语音和上下文单词嵌入,开发编码模型将这些嵌入词线性映射到大脑活动上。 具体发现 语言理解与生成顺序:在语言理解过程中,首先是语音嵌入预测沿颞上回(STG)的语音区域的皮层活动,几百毫秒后,语言嵌入预测布罗卡区(位于额下回;IFG)的皮层活动。在语言生成过程中,顺序则相反,先由语言嵌入预测布罗卡区的皮层活动,几百毫秒后,语音嵌入预测运动皮层(MC)的神经活动,最后,在说话者发音后,语音嵌入预测STG听觉区域的神经活动。这反映了神经处理的顺序,即先在语言区计划说什么,然后在运动区决定如何发音,最后在感知语音区监测说了什么。 神经活动与嵌入的关系:对于听到或说出的每个单词,从语音到文本模型中提取语音嵌入和基于单词的语言嵌入,通过估计线性变换,可以根据这些嵌入预测每次对话中每个单词的大脑神经信号。全脑分析的定量结果显示,在语音生成和语音理解过程中,不同脑区的神经活动与语音嵌入和语言嵌入的峰值存在特定的先后顺序和对应关系。 “软层次”概念:尽管大模型在并行层中处理单词,人类大脑以串行方式处理它们,但反映了类似的统计规律。大脑中较低级别的声学处理和较高级别的语义处理部分重叠,即存在“软层次”概念。例如,像IFG这样的语言区域不仅处理单词级别的语义和句法信息,也捕捉较低级别的听觉特征;而像STG这样的低阶语音区域在优先处理声学和音素的同时,也能捕捉单词级别的信息。 以往相关研究成果 2022年发表在《自然神经科学》上的论文显示,听者大脑的语言区域会尝试在下一个单词说出之前对其进行预测,且在单词发音前对预测的信心会改变在单词发音后的惊讶程度(预测误差),证明了自回归语言模型与人脑共有的起始前预测、起始后惊讶和基于嵌入的上下文表征等基本计算原理。 发表在《自然通讯》的论文发现,大模型的嵌入空间几何图形所捕捉到的自然语言中单词之间的关系,与大脑在语言区诱导的表征(即大脑嵌入)的几何图形一致。 后续研究还发现,虽然跨层非线性变换在LLMs和人脑语言区中相似,但实现方式不同。Transformer架构可同时处理成百上千个单词,而人脑语言区似乎是按顺序、逐字、循环和时间来分析语言。 总之,该研究表明,语音到文本模型嵌入为理解自然对话过程中语言处理的神经基础提供了一个连贯的框架,尽管大模型与人脑在底层神经回路架构上存在明显不同,但在处理自然语言时有着一些相似的计算原则。
1 个月前
数据标签业务(Data Annotation / Data Labeling)是人工智能(AI)产业链中的重要环节,主要为机器学习模型提供高质量的训练数据。随着人工智能技术的广泛应用,中国的数据标注行业迎来了巨大的商业机遇,同时也面临一系列挑战。本文将从市场需求、政策环境、技术发展、产业竞争等多个维度进行分析。 一、数据标签业务的商业机遇 1. AI产业高速发展带动数据需求增长 中国人工智能产业正在快速发展,自动驾驶、智能客服、智能安防、医疗AI等领域对高质量数据标注的需求不断增长。例如: 自动驾驶:需要海量的图像、视频数据进行道路标注,如车道线、行人、交通标志等。 智能医疗:需要专业医学影像数据标注,如CT、MRI图像的病变区域标注。 电商与内容推荐:需要大量的文本、语音、图像数据进行分类、情感分析等标注。 数据质量直接决定了AI模型的性能,因此高质量的数据标注服务成为AI企业的刚需。 2. 中国具备全球领先的“数据优势” 中国的互联网和移动应用市场庞大,数据量丰富,包括社交、购物、金融、交通、医疗等多个领域的数据资源。相比欧美国家对数据隐私的严格监管,中国本土市场的数据可获取性更强,为数据标注业务提供了丰富的原材料。 3. 人力成本相对较低,适合规模化发展 尽管中国的劳动力成本逐年上升,但相比欧美仍然较低,特别是在三、四线城市和农村地区。大量低技术工人可以通过简单培训参与数据标注工作,形成规模化的数据加工产业链。 4. 政策支持及人工智能发展战略 中国政府高度重视人工智能发展,出台多项支持政策,如《新一代人工智能发展规划》,鼓励企业布局AI数据相关业务。此外,地方政府也在推动“AI+产业”落地,为数据标注公司提供政策支持、产业园区资源等。 5. 行业逐步向标准化、自动化升级 随着AI技术的发展,数据标注行业正在向更高效的方向演进: 半自动化标注:利用预训练AI模型辅助人工标注,提高效率。 智能质量控制:采用机器学习算法对标注数据进行自动审核,减少人工错误。 行业标准化:政府与企业推动建立统一的标注标准,提高数据质量。 这些趋势有助于降低成本、提高效率,使数据标注企业更具竞争力。 二、数据标签业务的商业挑战 1. 低端市场竞争激烈,价格战严重 数据标注行业进入门槛较低,导致大量小公司涌入市场,尤其是低端手工标注业务竞争激烈,利润率较低。许多企业通过压低价格争夺订单,导致行业整体盈利能力下降。行业集中度低,超500家中小标注企业竞争,图像标注单价从0.5元/张降至0.2元/张(2020-2023年),毛利率普遍低于15%。 2. 数据隐私与安全监管趋严 随着《数据安全法》《个人信息保护法》等法规的实施,数据使用的合规性要求提高,许多企业在数据收集和处理过程中需要满足严格的合规要求。这对数据标注企业提出更高的合规成本,如: 数据脱敏处理:需要去除敏感信息,增加处理成本。 数据存储合规性:要求数据存储在国内,并满足安全要求。 3. 业务同质化,缺乏技术壁垒 目前市场上的数据标注公司大多依赖人力,缺乏自主技术创新,难以形成核心竞争力。随着AI自动化标注技术的进步,传统的纯人工标注模式可能被取代,低端数据标注公司面临淘汰风险。 4. AI自动化标注技术的冲击 AI本身的发展正在威胁传统人工数据标注市场。例如: 计算机视觉:自动图像识别和标注技术正在进步,减少人工标注需求。 自然语言处理(NLP):自动文本分析工具可以降低文本标注的人工需求。 虽然完全替代人工标注还需时间,但对于低难度标注任务,AI已经可以大幅减少人工参与。 5. 客户集中度高,议价能力低 目前中国数据标注市场的大客户主要是科技巨头(如BAT、华为、字节跳动等),这些企业的议价能力极强,小型标注公司难以获取高利润订单。此外,大型科技公司正在自建数据标注团队,减少对外部供应商的依赖,使数据标注企业的市场空间进一步压缩。 三、未来发展方向与建议 1. 向高价值标注业务转型 企业应避免陷入低端市场的价格战,转向更专业化、高价值的标注领域,如: 医疗AI标注(高精度医学影像、基因数据) 自动驾驶高精度3D点云标注 金融数据标注(信用风险评估、反欺诈分析) 这些领域要求专业知识,竞争相对较小,利润率更高。 2. 发展智能标注平台,提高自动化水平 企业应开发自有标注平台,结合AI自动化工具,提升标注效率。例如: 采用预标注+人工审核模式,提高效率。 发展众包平台,让自由职业者参与标注任务,降低成本。 引入区块链溯源技术,提高数据可信度。 3. 加强数据安全与合规管理 数据合规是未来发展的关键,建议: 采用数据脱敏技术,确保用户隐私安全。 获得ISO 27001信息安全认证,增强市场信任度。 避免使用敏感数据,规避法律风险。 4. 拓展海外市场 相比中国市场竞争激烈,欧美市场的数据标注需求仍然较大,且愿意支付更高的价格。可以通过合作或跨境平台提供数据标注服务,拓展海外业务。 5. 与AI企业深度合作,提供定制化服务 与AI企业建立深度合作,提供更符合客户需求的标注服务,如: 嵌入式标注服务(在AI开发平台上直接提供标注服务) 数据增强+标注(同时提供数据扩增和标注服务) SaaS模式标注平台(提供在线标注工具,企业自行标注) 四、结论 中国的数据标签行业正处于快速发展阶段,市场潜力巨大,但也面临激烈竞争和技术变革带来的挑战。未来,企业应摆脱低端市场竞争,向高价值、智能化、合规化方向发展,才能在行业中占据更有利的位置。同时,通过国际化布局和技术创新,也能进一步拓展市场空间,实现长期增长。 (图片来源:levity.ai)
1 个月前
在自然语言处理和人工智能领域,token通常是指文本中的基本单元,比如一个单词、一个标点符号或者一个子词等。100万token的输入输出量是一个较大的数据规模,以下从不同角度来理解这一概念: 从文本长度角度 一般来说,英文中一个单词可以看作一个token,中文可能一个字或一个词作为一个token。如果平均每个token对应5个字符(这只是一个粗略的估计,实际会因语言、文本类型等因素而不同),那么100万token大约对应500万个字符。以一本普通的中文书籍每页约1000字来算,500万个字符相当于5000页的书籍内容,这是非常庞大的文本量。 从处理难度角度 对于语言模型等人工智能系统来说,处理100万token的输入输出意味着要处理大量的信息。模型需要在这么多的token中理解语义、语法关系,捕捉上下文信息等,这对模型的容量、计算能力和算法设计都提出了很高的要求。模型需要有足够多的参数和足够深的网络结构,才能有效地处理如此大规模的文本数据,以生成准确、合理的输出。 处理如此大量的token还需要消耗大量的计算资源和时间。在训练过程中,可能需要使用高性能的GPU或TPU集群,花费数天甚至数周的时间才能完成训练。在推理阶段,也需要较多的计算资源来快速处理输入并生成输出,以满足实时性或高效性的要求。 从应用场景角度 机器翻译:如果用于机器翻译任务,100万token可能包含了各种领域的大量句子和段落。这意味着模型可以学习到丰富的语言表达方式和翻译模式,能够处理更复杂、更专业的翻译任务,提高翻译的准确性和质量。 文本生成:在文本生成任务中,如创作小说、新闻报道等,100万token的输入可以让模型学习到大量的文本风格、主题和结构信息,从而生成更丰富多样、更具创意和逻辑性的文本内容。 智能客服:对于智能客服系统,100万token的输入输出量可以使系统处理大量的用户咨询和问题,学习到各种常见问题的回答模式和解决方案,从而更准确、更快速地为用户提供服务,提高用户满意度。
2 个月前
开源版和商业不开源版的大语言模型(LLM)在多个方面存在显著区别,包括访问方式、性能、定制化能力、数据安全性、技术支持、成本等。以下是详细对比: 1. 访问方式 开源版:通常提供模型权重、训练代码,可以本地部署或在云端运行,无需依赖第三方API。 商业版(不开源):只能通过 API 访问,模型权重和训练数据不会公开,由官方托管并提供计算资源。 ✅ 适用场景:如果企业需要完全控制权,可以选择开源模型;如果希望快速接入、低维护成本,商业 API 可能更合适。 2. 性能和优化 开源版: 性能受限于开源社区的优化进展,部分版本可能比商业版稍弱。 用户可以自行调整超参数、微调(Fine-tuning),但需要较强的 AI 开发能力。 商业版(不开源): 由官方持续优化,通常具有更强的推理能力、上下文理解能力,以及更长的上下文窗口(如 GPT-4 Turbo、Claude 3)。 可能包含专有的训练数据和优化技术,准确率、鲁棒性更高。 ✅ 适用场景:如果需要顶级性能,建议选择商业版;如果可以接受一定的性能下降,开源版可减少成本。 3. 定制化能力 开源版: 可以本地部署,支持微调(Fine-tuning)、LoRA 适配、知识库增强(RAG)等深度优化。 企业可以将行业专属数据融入模型,打造更精准的 AI。 商业版(不开源): 一般只提供 API,用户无法修改底层模型。 部分商业版支持API 微调或定制化训练,但通常需要额外费用。 ✅ 适用场景:如果希望训练行业专属模型,开源版更适合;如果只需要通用问答,商业版 API 更便捷。 4. 数据安全性 开源版: 本地部署时数据完全自控,适用于高安全性需求(如医疗、政府、军工)。 但如果使用开源云服务,数据可能受服务器提供商限制。 商业版(不开源): 需要将数据传输到供应商的服务器,可能涉及数据合规问题(如 GDPR、企业隐私)。 供应商通常提供数据加密和隐私保护,但企业需评估安全性。 ✅ 适用场景:如果数据隐私至关重要,应选开源版并本地部署;如果数据安全可控,商业 API 更省事。 5. 技术支持 开源版: 依赖社区支持,如 GitHub、论坛、开源文档,问题解决效率不稳定。 需要内部 AI 工程团队维护,维护成本较高。 商业版(不开源): 由供应商提供专业技术支持,如 SLA(服务等级协议)、企业客服。 适用于对稳定性要求高的企业用户。 ✅ 适用场景:如果企业没有强AI团队,建议使用商业 API;如果有内部 AI 研发团队,可考虑开源版。 6. 成本 开源版: 模型本身免费,但需要自行部署计算资源,如 GPU 服务器、云计算等,成本取决于模型大小和推理需求。 适合长期、大规模使用,但初始投入较高。 商业版(不开源): 需要按 API 调用量或 订阅模式 付费,如 OpenAI 的 GPT-4 API、阿里云的 Qwen-Max。 适用于短期、小规模应用,初始成本低,但长期使用可能更贵。 ✅ 适用场景:如果使用量大,开源版(本地部署)更划算;如果只是轻量应用,商业 API 更方便。 7. 典型代表 类别 代表模型 访问方式 适用场景 开源版 LLaMA 3(Meta)、Mistral、Qwen 2.5(阿里)、Baichuan 2(百川) 本地部署/云端托管 定制化应用,数据隐私要求高 商业版(不开源) GPT-4(OpenAI)、Claude 3(Anthropic)、Gemini(Google)、文心一言(百度)、Qwen-Max(阿里) API 调用 低维护、高性能、快速集成 总结:如何选择? 🔹 选择开源版 ✅: 需要本地部署,保证数据安全(如企业内部 AI、政府、医疗等) 需要微调(Fine-tuning)和深度定制(如工业 AI 专用问答系统) 具备 AI 开发团队,可承担部署和维护成本 🔹 选择商业 API(不开源) ✅: 需要高性能、稳定性(如企业客服、B2B AI 平台) 不想自己维护模型,希望快速集成(如 SaaS AI 服务) 数据隐私要求不高,可以接受数据传输到第三方
2 个月前
AI 国际简讯 2025年02月18日 微软发布OmniParser V2.0工具,用于识别和解析屏幕上的可交互图标,新版本提升交互图标解析能力。 Meta Reality Labs 的研究团队推出"Pippo"模型,可从普通照片生成1K分辨率的多视角视频。 苹果将在Vision Pro头戴设备中推出Apple Intelligence系统,提供书写工具、Genmojis表情和图像功能。 JetBrains更新"AI Assistant"应用,支持本地大语言模型调用,可直接使用DeepSeek等离线模型。
2 个月前
比GraphRAG更懂“思考”,微软又开源PIKE-RAG:主打复杂私域知识理解和推理 继GraphRAG之后,微软又发布PIKE-RAG,主打在复杂企业场景中私域知识提取、推理和应用能力,PIKE-RAG 已在工业制造、采矿、制药等领域进行了测试,显著提升了问答准确率。报告、代码、demo均已开源。
2 个月前
VBA(Visual Basic for Applications)是一种事件驱动的编程语言,由微软开发,主要用于其Office套件中的应用程序自动化。它允许用户编写宏来扩展Office软件的功能,比如Excel、Word、PowerPoint和Access等。下面我将详细介绍VBA的一些核心概念和如何在Excel中创建简单的VBA代码。 VBA的基本概念 对象模型:每个Office应用程序都有一个对象模型,它定义了该程序的对象层次结构。例如,在Excel中,顶层对象是Application,它可以包含多个Workbook对象,而每个Workbook又可以包含多个Worksheet对象。 模块:在VBA中,代码被组织成模块。模块可以是标准模块、类模块或窗体模块。标准模块是最常用的,它们用于存储独立的过程和函数。 过程与函数:过程(Subroutine 或简称 Sub)是一段执行某些操作但不返回结果的代码块;而函数(Function)则是一段执行操作并返回一个值的代码块。两者都可以接受参数,并且可以在其他过程中调用。 如何在Excel中创建VBA代码 启用开发者选项卡 首先,你需要确保Excel的“开发者”选项卡已经启用: 打开Excel。 点击文件 > 选项 > 自定义功能区。 在右侧列表中勾选“开发者”复选框。 点击确定。 打开VBA编辑器 点击“开发者”选项卡中的“Visual Basic”按钮,或者按快捷键Alt + F11来打开VBA编辑器。 创建一个简单的VBA程序 假设我们要创建一个简单的VBA程序,该程序会在用户点击一个按钮时显示一条消息: Sub HelloWorld() MsgBox "Hello, World!" End Sub 这个例子展示了如何使用MsgBox函数来显示一个对话框。你可以通过插入一个按钮到工作表上,并将其关联到上述的HelloWorld子程序来触发这段代码的执行。 实际应用示例 如果你想要自动完成一些日常任务,例如为选定的数据区域添加边框,你可以编写如下代码: Sub AddBordersToSelection() Dim rng As Range Set rng = Selection With rng.Borders .LineStyle = xlContinuous .Weight = xlThin End With End Sub 在这个例子中,我们定义了一个名为rng的变量来表示当前选中的单元格区域,并给这个区域的所有边框设置了连续线条样式和细线宽。 以上只是对VBA的一个简要介绍,实际的VBA编程可以非常复杂,包括处理数据、操作文件系统、与其他应用程序交互等高级功能。对于更深入的学习,建议参考官方文档或其他学习资源。
4 个月前
据微软 2024 年 12 月 19 日发布的博文,Microsoft Edge 浏览器在 2024 年通过内置的 Copilot 功能,用户进行了超过 100 亿次的 AI 对话。 这凸显了用户对 AI 驱动工具的广泛接受和日益增长的依赖。这一里程碑表明: 用户对 AI 辅助工具的高接受度:越来越多的用户在日常浏览和工作中依赖 AI 工具进行搜索、内容生成和任务自动化。 AI 技术的成熟和普及:Copilot 功能显然已经在帮助用户更高效地获取信息和完成任务。 Edge 浏览器的市场竞争力:这一数据也反映出 Edge 浏览器在与其他浏览器的竞争中取得了一定的优势。