Dify 支持多种类型的 AI 应用,例如对话型应用、文本生成型应用等。它提供了可视化编排功能,可开箱即用,也能以“后端即服务”的 API 提供服务。
通过 Dify 创建的应用包括:
Dify 原生提供了对话和文本生成两种类型的应用,均已在 GitHub 上开源,用户可以基于它们创造出所需的应用。
在创建应用时,用户可以选择不同的大模型,如 OpenAI 的 GPT-4、GPT-3.5-turbo、GPT-3.5-turbo-16k、Text-Davinci-003,Azure OpenAI Service,Anthropic 的 Claude2、Claude-instant,Replicate,HuggingFace Hub,ChatGLM,Llama2,Minimax,讯飞星火大模型,文心一言,通义千问等。
此外,Dify 还支持插件能力,例如网页浏览、Google 搜索、Wikipedia 查询等第一方插件,可在对话中实现联网搜索、分析网页内容、展示 AI 的推理过程等功能。
对于一些复杂的需求,例如需要进行向量检索、全文检索或混合检索(向量+全文),并配置 embedding 和 reranker 模型等,Dify 也提供了相应的设置和操作界面。用户可以根据具体需求上传文件创建知识库,并在智能体 agent 设置中添加知识库、设置大模型人设、工具等。完成创建后,还可以通过 script、iframe 或者 API 接口调用的方式在其他平台或网站上使用 agent。
如果你想详细了解如何使用 Dify 创建特定类型的 AI 应用,可以参考其官方文档和相关教程。同时,Dify 可能会不断更新和扩展其支持的应用类型和功能,建议关注其官方渠道获取最新信息。
豆包AI
2 个月前
如何整合大模型API并提供开发者服务 随着人工智能技术的快速发展,越来越多的开发者希望在自己的应用中集成AI能力,如自然语言处理、图像生成、语音识别等。如果你计划搭建一个AI平台,并向开发者(B2C)提供AI API服务,那么本文将详细介绍如何整合现有大模型的API,并成为官方分销商。 1. 选择合适的大模型API 当前市场上已有多个强大的AI大模型提供API服务,以下是几家主流供应商: OpenAI(ChatGPT/GPT-4):适用于通用对话、文本生成、代码补全等。 Anthropic(Claude):擅长安全对话和长文本理解。 Google Gemini(原Bard):适合多模态(文本、图像)AI应用。 Mistral AI:提供高效、开源的AI模型,适合灵活集成。 Hugging Face:开放API,可用于多种NLP任务。 Stable Diffusion/DALL·E:用于图像生成。 Whisper API:优秀的语音识别能力。 选择API时,需要考虑成本、调用限制、商业许可、模型能力等因素。 2. 如何获得大模型API的分销权限? 如果你希望不仅是API的用户,还能将API分发给开发者,需要与AI公司建立更深层次的合作关系。不同公司有不同的合作方式: OpenAI(ChatGPT/GPT-4) 标准API使用:直接在OpenAI官网注册并获取API Key。 企业级API访问:通过 OpenAI Enterprise 申请更高额度的API。 成为OpenAI API Reseller(API分销商):需要直接联系OpenAI商务团队(sales@openai.com)并提供业务计划,通常要求较大的流量或消费额度。 Anthropic(Claude) 访问 Anthropic API 并申请企业合作。 需要提供详细的业务应用场景,并确保数据安全合规。 直接联系 sales@anthropic.com 申请API分销权限。 Google Gemini(原Bard) 使用 Google AI Studio 获取API。 申请Google Cloud AI企业级API,并与Google商务团队合作。 通过 Google Cloud AI Solutions 申请大规模API使用权限。 Mistral AI 访问 Mistral API 并申请企业级合作。 直接联系 Mistral 商务团队申请API分销许可。 Hugging Face 访问 Hugging Face Inference API。 联系 Hugging Face 申请企业API许可,并可能合作进行API优化。 3. 技术架构:如何整合多个API? 如果你希望提供一个集成多个AI API的服务平台,你需要构建一个API管理系统,包括: (1)API网关与管理 API网关(API Gateway):使用 Kong、AWS API Gateway、Apigee 统一管理所有API。 身份认证(Authentication):使用 JWT Token 或 OAuth2 进行用户管理。 负载均衡与缓存:结合 Redis 或 Cloudflare 优化API请求速度。 (2)用户管理与计费系统 API密钥管理:允许用户注册并申请API Key。 调用监控与限流:防止滥用,确保稳定性。 计费系统:使用 Stripe、PayPal 提供按量计费或订阅计划。 (3)前端支持与开发者体验 API文档:使用 Swagger UI 或 Redoc 提供清晰的API说明。 SDK支持:开发 Python/Node.js SDK 方便开发者集成。 在线测试环境:允许开发者在Web端试用API调用。 4. 商业模式:如何盈利? 如果你计划向开发者提供API服务,可以采用以下盈利模式: (1)免费+付费模式 提供 免费调用额度(如每月100次),超出后按量付费。 按不同模型提供不同的价格(GPT-4 高级版 vs GPT-3.5 免费版)。 (2)订阅模式 个人套餐:低价格,适合独立开发者。 企业套餐:支持高并发调用,并提供专属API密钥。 定制服务:为大型企业或团队提供专属AI API。 (3)增值服务 提供高优先级的API访问,减少延迟。 允许用户定制API模型参数,提高个性化。 结合其他工具,如AI自动化工作流、数据分析等。 5. 未来展望 随着AI技术的普及,越来越多的开发者希望将大模型能力集成到他们的产品中。如果你能整合多个AI API,并提供易用的开发者服务,将能在这一市场获得先机。通过与OpenAI、Anthropic、Google等公司建立合作,并搭建高效的API管理系统,你可以打造一个强大的AI API分发平台,为全球开发者提供优质的AI服务。 如果你有意向进入这一领域,不妨立即申请各大AI公司的企业级API,并开始搭建你的API分发平台!
2 个月前
比GraphRAG更懂“思考”,微软又开源PIKE-RAG:主打复杂私域知识理解和推理 继GraphRAG之后,微软又发布PIKE-RAG,主打在复杂企业场景中私域知识提取、推理和应用能力,PIKE-RAG 已在工业制造、采矿、制药等领域进行了测试,显著提升了问答准确率。报告、代码、demo均已开源。
3 个月前
搭建工业AI咨询平台在生产调度、预测性维护、缺陷检测等场景中,AI技术能够显著提升工业企业的效率和竞争力。
4 个月前
AI时代已经来临,人们的办公桌面将会有若干的AI工具,一套AI办公桌面将会受到人们的需求。这里是开发AI桌面办公平台aidesk的一般步骤: 需求分析与规划 明确功能需求:详细列出平台需要具备的功能,如不同AI工具的集成方式、用户界面的布局与交互设计、数据的存储与管理等. 确定用户群体:针对不同的用户群体,如企业办公人员、创意工作者、学生等,了解他们对AI工具的使用习惯和需求,以便更好地设计平台功能和界面 。 规划技术架构:考虑平台的整体架构,包括前端、后端、数据库等的选型和设计,确保系统的可扩展性、稳定性和安全性. 技术选型 前端开发:可选择适合桌面应用开发的技术框架,如Electron。它基于Web技术,能够使用HTML、CSS和JavaScript构建跨平台的桌面应用,具有开发效率高、易于上手等优点,还可以使用一些UI框架如Vue.js、React等,来提升界面的开发效率和用户体验. 后端开发:根据平台的功能需求和性能要求,选择合适的后端编程语言和框架,如Python的Flask、Django,Java的Spring Boot等。后端主要负责处理业务逻辑、与AI模型进行交互、管理用户数据和权限等. AI模型集成:根据需要集成的AI工具,选择相应的AI模型和框架。常见的有用于自然语言处理的Transformer架构、用于图像识别的卷积神经网络等。可以使用现有的开源AI模型,如Hugging Face的预训练模型,也可以根据具体需求自行训练和优化模型. 数据库选择:选择适合存储用户数据、项目数据、AI模型配置等信息的数据库,如MySQL、PostgreSQL等关系型数据库,或者MongoDB等非关系型数据库. 界面设计与开发 设计界面布局:根据用户需求和操作流程,设计简洁、直观的界面布局。将常用的AI工具以列表或图标形式展示在桌面上,方便用户快速找到和使用。同时,设计合理的工作区和操作界面,用于展示和编辑AI生成的内容. 实现交互功能:使用前端技术实现用户与界面的交互功能,如鼠标拖拽、点击、右键菜单等。用户可以通过鼠标将AI工具拖拽到工作区,进行相应的操作,并能够方便地调整工具的位置和大小。 确保界面响应式设计:使界面能够自适应不同的屏幕分辨率和窗口大小,保证在各种设备上都能提供良好的用户体验. AI工具集成 了解AI工具的接口:对于要集成的AI工具,详细了解其提供的API接口或开发文档,包括输入参数、输出格式、调用方式等,以便能够顺利地与平台进行集成. 编写集成代码:根据AI工具的接口文档,使用后端编程语言编写代码,实现与AI工具的通信和交互。通过调用AI工具的API,将用户输入的数据传递给AI模型,并获取模型生成的结果,然后将结果展示在平台的界面上. 测试与优化集成效果:对集成的AI工具进行全面测试,确保其功能正常、性能稳定。根据测试结果,对集成代码进行优化和调整,提高AI工具的响应速度和准确性。 功能模块开发 智能助手:开发能够理解用户指令并执行相应任务的智能助手,支持语音和文本交互。 文件管理:实现智能文件分类、搜索和版本控制,支持跨平台文件访问。 日程安排:集成日历功能,支持智能提醒、会议安排和冲突检测。 通讯协作:集成即时通讯和协作工具,支持团队沟通和项目管理。 用户体验优化 界面设计:注重简洁、直观的界面设计,提高用户操作效率。 交互体验:优化用户交互流程,减少用户学习成本。 个性化设置:提供丰富的个性化设置选项,满足不同用户的需求。 数据管理与安全 数据存储与管理:建立有效的数据存储和管理机制,确保用户数据、项目数据、AI模型数据等的安全存储和高效检索。对数据进行分类、备份和恢复策略的制定,以防止数据丢失和损坏. 用户认证与授权:设计用户认证和授权系统,确保只有授权用户能够访问和使用平台的功能和资源。可以采用用户名/密码、OAuth等多种认证方式,并根据用户的角色和权限,限制其对不同功能和数据的访问级别. 数据安全与隐私保护:采取必要的数据安全措施,如数据加密、防止SQL注入、跨站脚本攻击等,保护用户数据的安全性和隐私性。同时,遵守相关的法律法规,确保数据的合法使用和处理. 测试与优化 功能测试:对平台的各项功能进行全面测试,包括AI工具的集成效果、界面交互的流畅性、数据存储和管理的正确性等,确保平台能够满足用户的需求和期望. 性能测试:测试平台在不同负载条件下的性能表现,如响应时间、吞吐量、资源利用率等。根据测试结果,对性能瓶颈进行优化,提高平台的运行效率和稳定性. 用户体验测试:邀请用户参与测试,收集用户的反馈和建议,对界面设计、交互流程、功能布局等进行优化和改进,提升用户体验。 部署与维护 选择部署方式:根据平台的使用场景和用户规模,选择合适的部署方式,如本地部署、云端部署或混合部署。本地部署可以提供更高的安全性和数据隐私性,但需要用户自行维护服务器;云端部署则具有更好的可扩展性和成本效益,但需要考虑数据安全和隐私问题. 部署与配置环境:按照选定的部署方式,搭建和配置相应的服务器环境、数据库环境、AI模型运行环境等。将开发好的平台代码部署到服务器上,并进行必要的配置和调试,确保平台能够正常运行. 持续维护与更新:建立持续维护和更新机制,及时修复平台的漏洞和缺陷,优化性能,添加新的功能和AI工具。关注AI技术的发展动态,不断更新和升级平台的AI模型,以提供更强大、更智能的办公体验. 插图:Arc MaxAI
8 个月前
以下是一些关于 RAG(Retrieval-Augmented Generation,检索增强生成)企业落地的成功案例: Salesforce Einstein Salesforce 利用 RAG 技术打造了 Einstein 智能助手。 功能与应用:Einstein 可以从大量的客户数据、销售记录、市场趋势等信息中进行检索,并结合生成式回答来为销售团队提供个性化的建议和洞察。例如,当销售代表与客户沟通时,Einstein 能够快速检索相关客户信息和历史交易记录,同时生成针对当前情况的最佳销售策略建议,如推荐合适的产品、提供优惠方案等。 成果与效益:通过使用 Einstein,Salesforce 的客户企业显著提高了销售效率和客户满意度。销售团队能够更快速地响应客户需求,准确把握销售机会,从而增加了销售额和市场份额。同时,客户也受益于更加个性化和高效的服务体验。 Cisco with RAG for Customer Support Cisco 在客户支持领域应用了 RAG 技术。 功能与应用:当客户遇到技术问题时,Cisco 的支持系统可以从庞大的知识库中检索相关的解决方案和技术文档,并利用生成式模型为客户提供清晰、易懂的解答。例如,如果客户报告网络故障,系统会检索类似问题的历史解决方案,并根据当前情况生成具体的故障排除步骤和建议。此外,支持团队也可以利用该系统快速获取相关知识,提高解决问题的速度和准确性。 成果与效益:这大大缩短了客户等待解决问题的时间,提高了客户满意度。同时,Cisco 也降低了支持成本,因为系统可以自动处理许多常见问题,减少了人工干预的需求。 金融行业中的应用案例 某大型金融机构利用 RAG 技术提升风险管理和投资决策。 功能与应用:该机构将大量的金融市场数据、经济指标、行业研究报告等信息整合到 RAG 系统中。在进行风险管理时,系统可以检索历史市场波动数据和风险事件,并结合生成式分析提供当前市场风险的评估和预警。在投资决策方面,系统能够根据用户的投资目标和风险偏好,从海量数据中检索合适的投资组合建议,并生成详细的投资分析报告。 成果与效益:帮助金融机构更准确地评估风险,做出更明智的投资决策。提高了决策的效率和准确性,降低了投资风险,为机构带来了显著的经济效益。 这些成功案例展示了 RAG 技术在不同行业的广泛应用和巨大潜力,为其他企业考虑落地 RAG 提供了宝贵的参考经验。
8 个月前
当将 RAG 企业落地时,以下是一些需要注意的事项: 数据质量与管理: 确保数据的准确性、完整性和一致性。对用于检索的知识库进行严格筛选和清理,去除错误、过时或不相关的信息,以免影响生成结果的质量。 建立有效的数据更新机制,以保证知识库中的信息能够及时反映最新的知识和业务动态。例如,定期更新文档、数据库记录等。 对数据进行分类和标记,便于在检索时能够准确地定位到相关内容。这可能涉及到制定合适的分类体系和标签规则。 查询处理与优化: 针对不规范的查询和短查询,采用合适的处理方法。例如,通过意图分析确定用户意图,缩小召回范围;进行关键词提取,以便根据关键词进行检索;或者主动向用户提问以获取更多信息,从而使查询更加明确。 优化查询的性能和效率,避免出现响应时间过长等问题。可以通过选择合适的索引技术、优化检索算法等方式来提高查询速度。 集成结构化数据:如果企业中存在结构化数据(如关系数据库、Excel 文件等),需要考虑如何将其有效地整合到 RAG 流程中。这可能需要开发相应的数据接口或转换工具,以确保结构化数据能够与非结构化数据一起被检索和利用,为生成更全面和准确的回答提供支持。 模型选择与调优: 根据企业的具体需求和应用场景,选择合适的 RAG 模型架构和相关技术。不同的开源框架或商业解决方案在功能、性能、可扩展性等方面可能存在差异,需要进行充分的评估和比较。 对所选的模型进行调优,包括调整参数、优化训练过程等,以提高模型在企业数据上的表现。例如,可以使用特定领域的数据集进行进一步的微调,使模型更好地适应企业的业务知识和语言特点。 结果评估与反馈: 建立评估指标体系,对 RAG 生成的结果进行客观的评估。这可以包括准确性、相关性、可读性等方面的指标,通过与人工标注的结果进行对比或进行用户满意度调查等方式来衡量生成结果的质量。 根据评估结果,及时收集反馈信息,以便对模型和系统进行进一步的改进和优化。例如,如果发现某些类型的问题经常出现错误回答,可以针对性地调整数据或模型。 安全与隐私保护: 确保企业数据的安全,采取措施防止数据泄露、未经授权的访问等问题。这可能涉及到数据加密、访问控制、安全审计等方面的技术和管理措施。 如果处理的是包含个人隐私信息的数据,必须严格遵守相关的隐私法规和政策,对用户隐私进行保护。例如,在数据收集、存储和使用过程中,明确告知用户并获得其同意,对敏感信息进行脱敏处理等。 可扩展性与兼容性: 考虑企业未来的发展和业务扩展需求,选择具有良好可扩展性的 RAG 解决方案。这包括能够支持更大规模的数据量、更多的用户访问以及更复杂的应用场景等。 确保 RAG 系统与企业现有的技术架构和软件系统具有良好的兼容性,能够方便地进行集成和对接。例如,与企业的业务系统、数据库、应用程序等进行无缝连接,以实现数据的共享和交互。 用户体验与界面设计: 设计友好、直观的用户界面,使用户能够方便地输入查询并理解生成的回答。提供清晰的操作指引和反馈信息,降低用户的使用门槛和学习成本。 优化生成结果的呈现方式,使其易于阅读和理解。例如,对长篇幅的回答进行分段、突出关键信息、提供相关的参考资料或链接等。 成本控制与效益分析: 评估 RAG 项目的成本,包括技术采购、数据处理、模型训练、系统维护等方面的费用,确保在企业的预算范围内。 分析 RAG 系统为企业带来的效益,如提高工作效率、改善客户服务、创造新的业务机会等,以证明项目的投资价值。通过持续的效益分析,不断优化 RAG 系统的应用策略,以实现最大的收益。 法律合规性:了解并遵守相关的法律法规,特别是在涉及知识产权、内容创作、数据使用等方面。确保 RAG 生成的内容不侵犯他人的版权、商标权等合法权益,避免可能的法律风险。 总之,RAG 企业落地需要综合考虑技术、数据、业务、用户等多个方面的因素,通过精心的规划、实施和不断的优化,才能实现其在企业中的有效应用和价值最大化。在实施过程中,建议与专业的技术团队、法律顾问等进行合作,以确保各项工作的顺利进行。
8 个月前
RAG 技术在不同行业的广泛应用和巨大潜力,企业利用RAG技术激活企业内如数据,让企业再次焕发生命力!
8 个月前
RAG 即检索增强生成,它是一种结合了检索和生成技术的深度学习模型,常用于自然语言处理任务,如文本生成、问答系统等。
8 个月前
将多种AI产品的API聚合到一个平台上,可以大大提高工作效率和灵活性。即使不会编写代码也可以使用低代码/无代码平台来构建这个AI办公桌。
8 个月前
AWS携手 Accenture 专家,以领先的 AI 平台为助力,提供具有影响力的数字助理体验。