在2026年开发AI产品时,搭建一个生产级(production-grade)RAG系统已经不再是“简单接个向量数据库就行”,而是需要系统性工程化思维。以下是从0到1再到生产可用的完整路径,按实际优先级和踩坑顺序组织。
| 维度 | Demo级(常见教程) | 生产级(真正能上线赚钱) | 为什么重要 |
|---|---|---|---|
| 文档量 | 几MB ~ 几百页 | 几万 ~ 几百万文档 / 多模态 / 每天增量更新 | 决定了分块、索引、召回策略完全不同 |
| 召回准确率 | 60-75% | 目标88-95%+(视场景) | 差10%召回率,用户体验天差地别 |
| 延迟 | 2-8秒随便 | <1.5秒(p95),理想<800ms | 用户流失率与延迟呈指数关系 |
| 幻觉控制 | 看运气 | 需要多重机制把幻觉率压到<5% | 企业客户最怕胡说八道 |
| 可维护性 | 脚本跑一遍就行 | 需要数据质量pipeline、版本控制、监控告警 | 半年后没人敢碰代码 |
| 成本 | 不care | embedding + LLM + vectorDB 每月几千到几十万刀 | 直接影响商业模式能否跑通 |
明确业务成功标准(最重要一步)
准备评估集(金标准)
现代顺序(2025-2026主流做法):
文档清洗与质量分级(最被低估的一步)
结构化解析(别直接喂Unstructured)
高级Chunk策略(2026年最核心差异化点)
| 策略 | Chunk大小 | 适用场景 | 召回提升 |
|---|---|---|---|
| Fixed-size | 512 token | 快速验证 | baseline |
| Semantic | 200-800 | 主流生产 | +15-25% |
| Hierarchical | 父子chunk | 长文档、合同、手册 | +20-35% |
| Proposition-based | 小粒度命题 | 法律/医疗/技术文档 | +30%+ |
推荐起步组合:Semantic + 父子索引 + 100-200 token重叠
Embedding模型推荐(2026.2月时点性价比排序):
向量数据库主流选择:
| 场景 | 首选数据库 | 次选 | 备注 |
|---|---|---|---|
| < 100万向量 | Chroma / Qdrant本地 | PGVector | 开发快 |
| 100万-1亿 | Qdrant / Milvus | Weaviate | Qdrant 2025-2026口碑最佳 |
| 亿级 + 高并发 | Pinecone serverless | Zilliz Cloud | 省心但贵 |
| 极致私有化 | pgvector + pgvectorscale | Milvus standalone |
强烈建议:hybrid search(dense + sparse / BM25)几乎成为2026标配。
现代检索流水线(2026主流):
用户问题
↓
Query分类与改写(是否需要检索?多意图拆分?)
↓
多路召回(vector + BM25 + 知识图谱等)
↓
初筛 top-30~100
↓
重排序(Cohere Rerank3 / bge-reranker-v2 / flashrank)
↓
上下文压缩 / 抽取(LLM summarize top-8)
↓
最终给LLM的上下文(带清晰source引用)
Prompt工程模板(必须有):
防幻觉组合拳:
必须上的指标:
推荐工具组合(2026主流):
极简但能上线(适合小团队)
进阶企业级(已验证可支撑十万+文档)
加:混合检索 + 父子索引 + query分解 + 多路召回 + 上下文压缩 + corrective RAG + 在线监控
一句话总结2026年RAG哲学:
“70%的效果提升来自于数据质量、切块策略和检索后处理;20%来自embedding和重排序模型;只有10%靠换个更强的LLM。”
先把前70%做好,后面自然水到渠成。
( Grok )

1 天前
Node.js 和 Git 是支持 AI Agent 开发、依赖管理和协作的基础工具。

13 天前
AI Agent 的真正智能,来自于知识获取(RAG) + 协作协议(MCP) + 执行能力(SKILLS)的统一协同,而不是单一大模型孤立输出。

14 天前
作者: Augusto Marietti(Kong CEO & 联合创始人)、YJ Lu(Teachers’ Venture Growth 总监)、Yiran Wu(Teachers’ Venture Growth 投资分析师) 背景:上下文是新的算力 过去几年,AI 以史无前例的速度发展。从传统机器学习系统跃迁到能写作、编程、推理的生成式 AI 模型,这一变化彻底改变了我们与 AI 的互动方式。但旅程并未结束。 我们正进入一个新的阶段:具备上下文理解与自主行动能力的 Agentic AI(代理式 AI)。它们能自主设定目标、执行任务,并且几乎不需要人工干预。 支撑这一转变的核心是 Model Context Protocol(MCP)模型上下文协议 —— 一个新兴标准,用于将基于提示的生成式 AI 模型连接到真实世界的数据、工具与操作。 上一阶段的问题:缺失的上下文(404) 直到最近,大多数前沿大模型都运行在“围墙花园”中: 它们能理解用户提示并生成文本,但无法标准化地访问个人或企业数据、内部工具、API 或其他关键上下文来源。 企业若想让模型具备上下文能力,只能构建昂贵、脆弱且难以维护的定制集成(“胶水代码”)。 2024 年 11 月,Anthropic 推出开源框架 MCP,旨在通过通用协议将上下文引入 LLM,使其能发现、调用并认证外部系统的 API。 MCP 很快成为行业标准,被 OpenAI、Google 等巨头采用。 随着生态成熟,AI 系统将能在不同工具之间保持上下文,实现可持续的架构。 MCP 如何工作? 在 MCP 之前,每个 LLM 都有自己的插件格式,需要为每个工具写独立的集成代码,形成 N × M 的复杂矩阵。 MCP 将这一矩阵折叠为一个供应商中立的系统,通过定义清晰的角色(host、client、server),让工具能以一致方式被发现与调用。 只需为每个上下文源构建一个 MCP server,任何兼容 MCP 的 AI 助手都能像使用工具箱一样使用它。 流程如下: 用户输入提示 模型解析意图 模型不再“猜测”,而是向 真实上下文 请求信息 MCP client 将意图转为标准化请求 MCP server 执行 API 调用并返回结构化结果 模型基于真实数据生成上下文感知的输出 最重要的是:不再需要 N × M 的胶水代码。 承API之踵,拓更阔之路 科技行业并非第一次需要通用标准来实现规模化。 API 曾是软件互联的关键: 它定义了软件之间如何交流、返回什么、如何安全交换信息。 API 真正爆发是在 REST、JSON、OAuth 等标准化之后,开发者终于能以可移植、可预测的方式构建软件。 这催生了 Stripe、Twilio、Plaid 等“API 即业务”的公司。 MCP 正在走类似的道路: 标准化模型访问工具与数据的方式。 随着 MCP 采用率提升,我们将看到 API 生态曾经出现的配套设施: 注册表、可观测性、审批系统、策略引擎、更好的工具链等。 我们的判断:上下文 + API + 工作流 = Agentic AI 我们押注两个方向: Anthropic 的 MCP 正成为连接 LLM 与工具/数据的行业标准,为代理式工作流与多代理系统(A2A)奠定基础。 Kong 将其在 API 管理领域的领先地位扩展到 AI 连接层,成为企业系统与新一代 AI 代理之间的“连接组织”。 Anthropic Anthropic 推出 MCP,是因为 AI 的未来不仅在于更大的模型,还在于将模型连接到正确的上下文。 2025 年 5 月,Anthropic 发布 Integrations,将 MCP 支持扩展到 Claude API,使 Claude 能无代码连接任何远程 MCP server。 未来路线图从单一代理转向多代理协作(A2A): 一个代理获取客户数据 一个代理做投资组合分析 一个代理生成合规报告 全部通过 MCP 与 A2A 无缝协调 AI 将从单一助手变成专业代理网络。 Kong Kong 正将其 API 管理平台扩展到 AI 连接层,推出: AI Gateway:将 LLM/MCP/API 调用视为 API 流量进行路由、安全、监控与优化 MCP Server for Konnect:将企业系统(API、服务、分析等)通过 MCP 暴露给 AI 代理,使其能用自然语言查询并获取洞察 Kong 的愿景是: “没有 API,就没有 AI。” MCP 的下一章:Linux 基金会托管 2025 年 12 月,Anthropic 将 MCP 捐赠给 Linux 基金会旗下的新机构 Agentic AI Foundation(AAIF)。 AAIF 由 Anthropic、Block、OpenAI 共同创立,并获得 Google、Microsoft、AWS、Cloudflare、Bloomberg 支持。 MCP 的开源治理模式类似 Linux、Kubernetes、Node.js、PyTorch 等项目,预计将加速其采用。 目前 MCP 已实现: 每月 9700 万+ SDK 下载 1 万+ 活跃服务器 深度集成到 Claude、ChatGPT、Gemini 等产品 MCP 正从开发者框架走向下一代 AI 工作流的关键基础设施。 未来的机会 MCP 通过提供一个中立、通用的语言,让模型能访问工具、数据与系统,从而降低摩擦、提升互操作性。 随着采用率提升,我们将看到类似 API 生态的爆发: 新商业模式 新工具链 新应用类别 但机会伴随风险: 工具滥用 数据暴露 安全治理需求 生态必须在开放与安全之间取得平衡。 标准本身不会改变世界,生态系统才会。 如果成功,MCP 将成为未来几十年 AI 智能如何被封装、共享与扩展的基础设施。 (文章来源otpp.com )

14 天前
Agent是具备自主决策、工具调用与状态感知的智能体概念,LangGraph则是LangChain生态下的图驱动有状态Agent编排框架,专门解决复杂Agent的状态管理、循环分支与持久执行问题,是构建生产级Agent的核心基础设施。二者是“概念-实现”的强绑定关系,LangGraph为Agent提供图建模、状态持久化、人机协作等关键能力,适配ReAct、多智能体协作等复杂场景。 核心关联逻辑:概念与实现的分层 层级 定位 核心内容 概念层(Agent) 自主决策执行单元 LLM+Tools+自主循环(Thought→Action→Observation),解决非预定义复杂任务 实现层(LangGraph) 图驱动Agent框架 以有向图建模Agent流程,通过State/Nodes/Edges/Checkpointing支撑复杂逻辑 生态层 LangChain全家桶 LangGraph无缝集成LangChain的LLM/Tools/Prompt与LangSmith调试能力,降低开发门槛 LangGraph为Agent解决的核心痛点 有状态执行:用State统一管理对话历史、工具输出、中间结果,支持跨轮次上下文与长期记忆,避免“失忆”。 复杂流程编排:将Agent步骤拆为Nodes(LLM调用、工具执行、决策判断),用Edges(含条件分支)定义路径,原生支持循环(如ReAct迭代)与并行执行。 持久化与容错:Checkpointing自动保存每步状态,任务中断后可恢复,适配长时间运行场景(如多轮调研、项目管理)。 人机协作可控:支持执行中人工干预状态、审批工具调用,解决Agent“黑盒操作”风险。 多Agent协同:将不同功能Agent作为节点,通过图结构实现任务拆分与结果聚合,适配复杂团队协作流程。 典型实现范式:ReAct Agent的图建模 定义State:封装消息、工具结果、思考记录等,用TypedDict/Pydantic统一管理。 配置Nodes:LLM节点(推理决策)、工具节点(执行调用)、路由节点(判断是否继续)。 连接Edges:按条件分支(如“有工具调用则执行工具,否则结束”)构建循环路径。 启用Checkpointing:保存每步状态,支持断点恢复与调试追踪。 部署与监控:用LangSmith可视化执行路径,快速定位逻辑问题。 与传统Agent实现的差异 对比项 LangGraph驱动Agent LangChain基础Pipe 普通云端Agent 状态管理 原生持久化,跨轮次记忆 无内置状态,需手动维护 依赖会话缓存,易丢失 复杂逻辑 支持循环、条件分支、并行 线性流程,扩展有限 多为单步/固定链,灵活度低 容错能力 Checkpointing断点恢复 无容错,中断需重跑 云端依赖,故障难恢复 可控性 执行中人工干预 固定流程,干预困难 操作透明性差 关键使用场景 单Agent复杂任务:市场调研(搜索→数据清洗→报告生成)、财务对账(多系统数据拉取→交叉校验→异常告警)。 多Agent协作:产品开发(需求Agent→设计Agent→开发Agent→测试Agent)、跨境电商(选品→翻译→投放→售后)。 长期运行任务:客户成功跟进(多轮问题诊断→方案生成→效果复盘)、内容系列创作(选题→素材→撰写→发布)。 快速上手建议 用create_react_agent快速搭建基础Agent,绑定LLM与Tools,验证核心流程。 自定义State结构,覆盖任务类型、工具结果、历史对话等关键字段。 拆分Nodes与Edges,添加条件判断(如“金额>1000需审批”),提升流程可控性。 启用Checkpointing并接入LangSmith,监控执行路径与状态变化。

16 天前
命令优先,而非图形界面。

19 天前
原名 Clawdbot 的灵感来自 Claude 模型加载时出现的那个“Clawd”小龙虾/爪子吉祥物。

19 天前
奥地利最知名的独立开发者 Steinberger 是全球最热的“一人公司”/“vibe-coding”代表人物之一。

1 个月前
MongoDB 和 PostgreSQL 都是当今最顶尖的数据库,但它们的设计哲学截然不同。没有绝对的“赢家”,只有更适合我们场景的工具。 为了帮助我们做出决定,本文将从核心差异、适用场景和决策建议三个维度为你详细拆解。 ⚔️ 核心差异速览 首先,我们需要理解它们最本质的区别: PostgreSQL (Postgres):是关系型数据库 (SQL) 的典范。它像一个严谨的图书管理员,要求你先定义好书架(表结构),再把内容规整地放入格子中。它强调数据的强一致性、完整性和复杂的关联查询。 MongoDB:是文档型数据库 (NoSQL) 的代表。它像一个灵活的储物箱,你直接把整个“包裹”(JSON-like 文档)扔进去就行,不需要预先定义里面有什么。它强调灵活性、高吞吐量和水平扩展能力。 为了一目了然,我整理了这份对比表: 维度 PostgreSQL (SQL) MongoDB (NoSQL) 数据模型 表格结构(行和列),严格 Schema 文档结构(BSON/JSON),灵活 Schema 查询语言 标准 SQL,支持复杂的多表 JOIN MongoDB 查询语言 (MQL),擅长单集合查询 扩展方式 主要靠垂直扩展(升级服务器配置) 天生支持水平扩展(分片,加机器) 事务支持 完整的 ACID 事务,强一致性 支持多文档 ACID 事务,但更偏向高性能 适用数据 结构化数据,数据关系复杂 半结构化/非结构化数据,数据结构多变 🧭 场景决策:什么时候选哪个? 🅿️ 选择 PostgreSQL 的情况 如果业务场景符合以下特征,PostgreSQL 是不二之选: 需要复杂的关联查询 (JOIN) 比如电商系统,你需要把“订单表”、“用户表”、“商品表”关联起来,计算某个用户在某段时间的消费总额。PostgreSQL 的 SQL 优化器在处理这种复杂查询时比 MongoDB 强大得多。 对数据一致性要求极高 (ACID) 比如银行转账、金融交易系统。你必须确保数据的绝对准确,不能容忍“最终一致性”带来的延迟。PostgreSQL 的强一致性模型(Serializable 隔离级别)能给你最强的安全感。 数据结构相对稳定 如果业务逻辑已经很成熟,表结构很少变动,PostgreSQL 严谨的 Schema 能帮你避免很多数据错误。 地理空间数据处理 (PostGIS) 如果需要做地图相关的复杂计算(如“查找附近5公里的医院”),PostgreSQL 的 PostGIS 扩展是行业标准,功能比 MongoDB 的地理空间查询更强大。 🅼️ 选择 MongoDB 的情况 如果你的业务场景符合以下特征,MongoDB 会让你开发得更爽: 数据结构灵活多变 (Schema-less) 比如内容管理系统(CMS)或用户画像系统。不同用户可能有不同的属性,或者需求迭代非常快,今天要加个“爱好”字段,明天要加个“等级”字段。MongoDB 不需要改表结构,直接插入新字段即可,不会阻塞线上业务。 海量数据写入与高并发 比如物联网(IoT)数据、日志收集、实时分析。这些场景下数据像洪水一样涌来,且主要是插入操作。MongoDB 的分片(Sharding)机制可以让你轻松地通过增加服务器来横向扩容,扛住巨大的流量。 数据本身就是“文档”形式 比如博客文章、评论、JSON 配置文件。这些数据天然就是嵌套的结构,用 MongoDB 存储,直接就是一对一的映射,不需要像在 SQL 里那样为了存一个对象而拆分成多张表。 快速原型开发 如果是初创公司,或者在做一个新项目,业务逻辑还不确定。MongoDB 的灵活性能让你快速迭代,不用在项目初期就花大量时间设计复杂的数据库表结构。 🤝 一个有趣的趋势:界限正在模糊 值得注意的是,这两个数据库都在互相学习对方的优点: PostgreSQL 现在拥有极好的 JSONB 支持。你可以把表的一列定义为 JSONB 类型,像存文档一样存数据,甚至可以对 JSON 里面的字段建索引。这使得 Postgres 也能胜任很多 NoSQL 的场景。 MongoDB 在 4.0 版本之后引入了多文档 ACID 事务,并增强了聚合管道的能力,让它也能处理更复杂的业务逻辑。 📌 总结建议 如果是做金融、ERP、CRM 或者需要复杂报表分析,请毫不犹豫地选择 PostgreSQL。它成熟、稳健、功能强大。 如果是做社交 App、游戏、物联网、内容平台 或者需要快速迭代的初创项目,MongoDB 会让你的开发效率倍增,运维压力更小。 在实际的大型项目中,混合使用也是一种非常聪明的策略。例如:用 MongoDB 存储原始的用户行为日志(写入快、灵活),然后通过 ETL 工具清洗后存入 PostgreSQL 供运营人员做复杂的财务或业务分析(查询强、一致性强)。
Minimax(海螺AI)已由大模型名Minimax替换原海螺AI。现海螺AI为Minimax视频生成产品名。
海螺AI