
Voiceflow是面向产品与业务团队的低代码协作平台,专注快速构建、测试、部署与规模化管理客服/营销/呼叫中心等场景的语音与文本AI Agent,支持多LLM接入、低代码工作流与全渠道部署,兼顾敏捷开发与企业级安全管控。
| 功能模块 | 核心能力 | 关键价值 |
|---|---|---|
| 多模态AI Agent构建 | 可视化设计语音/聊天Agent,支持复杂对话逻辑、分支与循环 | 无需代码即可实现FAQ、工单创建、预约调度等多步骤任务 |
| 知识底座(Knowledge Base) | 导入文档/网页/CSV构建向量知识库,支持检索增强生成(RAG) | 确保Agent回复基于权威数据,减少幻觉,支持多轮上下文关联 |
| 工作流与逻辑编排 | 拖拽式Workflow Builder,支持条件判断、API调用、函数集成 | 自动化复杂任务(如退款申请、订单查询、跨系统数据同步) |
| 多LLM与模型适配 | 兼容OpenAI、Anthropic、Google Gemini等,支持自定义模型接入 | 灵活匹配成本、性能与合规需求,适配不同场景精度要求 |
| 全渠道部署 | 一键发布至网页聊天、电话(VoIP/固话)、短信/社交消息 | 统一Agent能力跨渠道触达用户,无需重复开发 |
| 测试与监控 | 实时原型测试、用户旅程回放、对话质量分析与SLA告警 | 快速迭代优化,保障Agent响应准确性与可用性 |
| 企业级安全与协作 | 实时多人协作、SSO、权限管控、数据加密与审计日志 | 适配企业级安全合规要求,统一团队协作的单一数据源 |
| 优势 | 局限 |
|---|---|
| 低代码+可视化,非技术团队可独立开发,开发效率显著提升 | 超复杂定制化场景(如金融风控级对话)仍需开发者介入API/函数扩展 |
| 多渠道+多LLM适配,灵活应对业务与技术变化 | 高阶RAG调优与模型微调需具备基础AI知识 |
| 协作+版本+监控一体化,适合团队化开发与规模化运维 | 企业级功能(如专属集群、深度定制集成)需付费企业版支持 |
| 开箱即用的行业模板,降低场景化落地门槛 | 电话Agent的语音自然度与口音适配需针对性优化测试 |
Voiceflow以“低代码+全流程协作+多渠道部署”重新定义AI Agent开发范式,既降低非技术团队使用AI的门槛,又为开发者保留扩展空间,是快速落地客服、销售、内部协同等场景AI Agent的优选平台。
如果你的使用场景是客服FAQ/电话坐席/销售线索跟进,那使用Voiceflow就对了!
免责声明:本网站仅提供网址导航服务,对链接内容不负任何责任或担保。
16 小时前
命令优先,而非图形界面。

3 天前
原名 Clawdbot 的灵感来自 Claude 模型加载时出现的那个“Clawd”小龙虾/爪子吉祥物。

3 天前
奥地利最知名的独立开发者 Steinberger 是全球最热的“一人公司”/“vibe-coding”代表人物之一。

18 天前
GTM(Go-to-Market)市场进入策略,是一个整合了产品定位、定价、渠道、销售和客户成功的系统性工程。

1 个月前
Nova 2是亚马逊于2025年12月在re:Invent 全球大会上推出的新一代基础模型家族,共包含4款模型,均需通过Amazon Bedrock平台使用,兼顾行业领先的性价比与多场景适配性,具体介绍如下 : 1. Nova 2 Lite: 主打快速、高性价比的日常推理任务,可处理文本、图像和视频输入并生成文本。能通过调节“思考”深度平衡智能、速度与成本,适合客服聊天机器人、文档处理等场景。在基准测试中,它对标Claude Haiku 4.5、GPT - 5 Mini等模型,多数项目表现持平或更优。 2. Nova 2 Pro(预览版): 是该家族中智能度最高的推理模型,可处理文本、图像、视频和语音输入并生成文本。适配代理编码、长期规划等复杂任务,还能作为“教师模型”向小型模型传递能力,在与Claude Sonnet 4.5、Gemini 2.5 Pro等主流模型的对比中,多项基准测试表现出色。 3. Nova 2 Sonic: 专注端到端语音交互的模型,能实现类人化实时对话。它支持多语言与丰富音色,拥有100万token上下文窗口,可支撑长时交互,还能与Amazon Connect等语音服务、对话框架无缝集成,适配客服、AI助手等语音场景。 4. Nova 2 Omni: 业内首款统一多模态推理与生成模型,可处理文本、图像等多种输入,还能同时生成文本和图像。它能一次性处理海量多格式内容,比如数百页文档、数小时音频等,适合营销素材一站式制作等需要整合多类信息的场景。 这4款模型均具备100万token上下文窗口,且内置网页查找和代码执行能力,能保障回答的时效性与实用性 。

3 个月前
Alice AI:俄罗斯搜索引擎Yandex推出的人工智能助手 从日常任务到城市生活,Yandex的Alice AI正在重新定义人与机器的互动方式。 在2025年10月28日的“Alice,what‘s new?”大会上,俄罗斯科技巨头Yandex推出了全新升级的Alice AI——一个强大的通用神经网络,能够帮助用户在聊天中解决几乎任何任务。 这项技术代表了过去几十年聊天机器人从简单模式匹配到智能交互的演进历程。Alice AI不同于传统的规则驱动聊天机器人,它基于最先进的生成模型,不仅能理解复杂请求,还能主动协助用户完成从信息查询到实际行动的全流程任务。 01 从ELIZA到Alice AI,技术革命的演进历程 聊天机器人的发展始于20世纪60年代,当时麻省理工学院教授魏岑鲍姆发明了世界上第一个聊天机器人ELIZA,它通过模式匹配和替换方法来模拟对话。 受到ELIZA的启发,理查德·华莱士博士在1995年开发了ALICE系统(Artificial Linguistic Internet Computer Entity)。 ALICE采用启发式模式匹配的对话策略,并支持基于人工智能标记语言(AIML)的规则定义。 这一系统在人工智能领域获得了高度认可,在2000年、2001年和2004年三次获得洛伯纳奖(Loebner Prize)。 然而,传统的ALICE系统仍然依赖于预设的模板和规则,需要大量人力进行设计和制定。 Yandex的Alice AI则代表了技术演进的新阶段,它不再局限于规则驱动,而是基于大规模训练的神经网络,具备真正的理解和生成能力。 02 多模态架构,Alice AI的技术内核 Alice AI由三个核心模型共同驱动,构成了其多功能的技术基础。 Alice AI LLM负责处理语言相关的任务,包括回答问题、生成文本和逻辑推理。 Alice AI ART专注于视觉内容生成,能够根据文本描述创建图像和视频内容。 Alice AI VLM作为视觉语言模型,专精于图像分析、理解和与图像相关的任务解决。 这一模型家族将继续扩展,例如图像编辑模型即将推出。 Alice AI支持多种交互方式,包括文本输入、语音对话和实时摄像头交互。 用户可以通过手机摄像头获取实时视觉分析,使Alice AI能够成为识别物体、解释场景的随身助手。 03 四大应用场景,从聊天到实际行动 Alice AI的能力体现在多个实际应用场景中,使其成为用户日常生活的有用伙伴。 智能对话与文件处理:Alice AI可以处理各种类型的文件(DOC、DOCX、PDF、TXT),从中提取关键信息并生成清晰的报告。 它能够进行复杂问题的推理分析,提供深思熟虑的结论而不仅仅是快速回答。 视觉识别与创作:通过图像识别技术,Alice AI可以读取照片中的文本(如收据),识别物体,并提供即时视觉数据分析。 用户也可以请求生成图像或动画照片,用于社交媒体内容、标志设计或生日卡片制作。 浏览器集成与网页交互:Alice AI将很快深度集成到Yandex Browser中,能够利用活动标签页中的信息(无论是文本文档还是视频)来回答问题。 例如,用户可以直接询问一个500页的PDF报告中是否包含6月的销售数据,或者询问关于黑洞视频中讲师提到的内容。 城市服务与AI代理:Alice AI即将帮助城市居民预订出租车、安排送货、订购食物或杂货。 当用户提出请求时,AI代理会分析需求,确定能够处理任务的服务,并连接相应的代理——出租车、食品、 Lavka或送货。 04 “我的记忆”,前瞻性功能重新定义个人助手 Alice AI即将推出的“我的记忆”(My Memory)功能,将更进一步改变用户与AI的互动方式。 这一功能让Alice AI能够将用户随意思考的想法和想法转化为待办事项列表、购物清单、笔记和提醒,所有这些都直接呈现在聊天界面中。 用户可以在行动中向Alice AI口述任务,它会记住所有内容,进行组织,并在适当时机提醒重要事项。 Yandex还宣布了搭载Alice AI的可穿戴AI设备,使用户无需智能手机即可随时记录想法和想法。 这些设备将专注于“我的记忆”服务,让用户能够随时随地通过语音与Alice AI交互。 05 对比传统聊天机器人,Alice AI的突破 与传统聊天机器人相比,Alice AI在多个方面实现了技术突破。 传统聊天机器人如ALICE主要依赖于启发式模式匹配和AIML规则,需要大量人工编写的模板。 而Alice AI基于大规模训练的神经网络,能够理解更复杂的查询并生成更自然的回应。 传统系统多数仅限于文本对话,而Alice AI提供多模态交互,包括文本、图像、视频和语音。 最显著的进步在于,传统聊天机器人主要用于信息查询或简单任务,而Alice AI能够通过AI代理执行端到端的实际任务,从信息收集到最终结果。 从简单的模式匹配到复杂的多模态交互,从回答问题到执行任务——Alice AI代表了聊天机器人技术的又一次飞跃。 随着AI代理和“我的记忆”功能的推出,Alice AI正逐步从一个对话工具演变为一个能够理解、预测并满足用户需求的真正个人助手。 技术专家指出,未来的聊天机器人将不再局限于回答问题的角色,而是成为人类与数字设备交互的重要桥梁。 Alice AI正是这一趋势的领先代表,它正在重新定义我们与技术共存的方式。

10 个月前
根据《Nature》最新发表的研究,非营利研究机构METR发现了一项被称为“智能体摩尔定律”的规律,即AI智能体(Agent)在完成长期任务方面的能力每7个月翻一番。这一发现揭示了AI在任务完成时间跨度上的指数级增长趋势,并提出了“50%-任务完成时间跨度”这一新指标来衡量AI的能力变化。 核心发现 能力翻倍周期:自2019年以来,AI智能体完成任务的时间跨度每7个月翻一番。这意味着,如果2019年AI完成某项任务所需时间对应人类需要10分钟,那么7个月后,这一时间将缩短至20分钟。 加速趋势:2024年,AI能力的增长速度进一步加快,部分最新模型的能力每3个月翻一番。 未来预测:按照这一趋势,预计5年后(即2030年左右),AI将能够完成许多当前需要人类花费一个月时间才能完成的任务。 研究方法 METR团队通过以下步骤验证了这一规律: 任务设计:设计了170个多样化任务,涵盖软件工程、机器学习、网络安全等领域,并测量人类专家完成这些任务所需的时间,建立“人类基准线”。 指标引入:提出了“50%-任务完成时间跨度”指标,即AI在50%成功率下完成任务的时间长度。这一指标对数据分布的微小变化具有鲁棒性。 模型评估:评估了2019年至2025年间发布的13个前沿AI模型(如GPT系列、Sonnet 3.7等),通过逻辑回归分析计算每个模型的时间跨度。 验证与外部实验 为了验证结果的可靠性,研究团队进行了多项外部实验,包括: 回溯预测:使用2023-2025年数据验证趋势一致性。 任务混乱度分析:评估任务复杂性对AI性能的影响,发现AI在复杂任务上的提升速度与简单任务相似。 基准测试:在SWE-bench等数据集上验证了类似的指数增长趋势。 意义与影响 技术进步:这一发现标志着AI在执行长期任务能力上的显著进步,可能推动AI在软件开发、研究等领域的广泛应用。 劳动力市场影响:AI能力的快速提升可能对劳动力市场产生深远影响,未来或替代部分人类工作,尤其是重复性和耗时任务。 社会挑战:研究提醒社会各界需关注AI技术进步带来的就业和经济挑战,并提前制定应对策略。 未来展望 METR团队预测,按照当前趋势,AI可能在2028年11月达到一个月的任务时间跨度,保守估计则在2031年2月实现。尽管研究存在任务局限性和未来不确定性,但团队确信AI能力每年有1~4倍的增长趋势。 这项研究为AI技术的发展提供了新的量化标准,同时也引发了对AI未来应用和影响的深入思考。

10 个月前
阿里推出新夸克,集成AI对话、深度搜索、深度执行等功能,标志着其从搜索引擎向AI Agent的转型。 新夸克接入通义系列模型,用户规模超2亿,DAU达3430万,位居AI应用榜首。
Minimax(海螺AI)已由大模型名Minimax替换原海螺AI。现海螺AI为Minimax视频生成产品名。
海螺AI