
Zen7 Payment Agent是Zen7 Labs推出的全球首个去中心化支付智能体(DePA),它为AI智能体提供了自主支付的能力,旨在打造下一代AI Agent金融基础设施。

21 小时前
命令优先,而非图形界面。

3 天前
原名 Clawdbot 的灵感来自 Claude 模型加载时出现的那个“Clawd”小龙虾/爪子吉祥物。

3 天前
奥地利最知名的独立开发者 Steinberger 是全球最热的“一人公司”/“vibe-coding”代表人物之一。

3 个月前
2025年10月28日,PayPal宣布已与OpenAI签署合作协议,从2026年起,PayPal的数字钱包将嵌入ChatGPT,允许用户直接在该聊天机器人中完成购物支付。 PayPal首席执行官亚历克斯・克里斯表示,这项协议于上周末敲定。届时,使用PayPal服务的商家,其商品将可在ChatGPT被发现,且无需搭建集成系统,PayPal将在后台处理商家路由与支付。用户可使用PayPal钱包结账,享受买卖双方保护及纠纷解决服务,PayPal还将通过独立支付API处理ChatGPT内的银行卡支付。 此次合作PayPal将采用智能体商业协议(ACP)并结合OpenAI的“即时结账”功能。ACP是OpenAI开发的开源规范,可助力商家在AI应用中展示商品,方便用户通过AI智能体购物。OpenAI于9月推出的“即时结账”功能,能让用户在不离开ChatGPT的情况下确认订单、物流及支付信息并完成购买。 受此消息影响,PayPal盘前一度大涨超15%。此次合作标志着OpenAI在将ChatGPT拓展至电子商务领域方面迈出新一步,也被视为开启了一种由“代理式AI”驱动的全新购物模式。

10 个月前
根据《Nature》最新发表的研究,非营利研究机构METR发现了一项被称为“智能体摩尔定律”的规律,即AI智能体(Agent)在完成长期任务方面的能力每7个月翻一番。这一发现揭示了AI在任务完成时间跨度上的指数级增长趋势,并提出了“50%-任务完成时间跨度”这一新指标来衡量AI的能力变化。 核心发现 能力翻倍周期:自2019年以来,AI智能体完成任务的时间跨度每7个月翻一番。这意味着,如果2019年AI完成某项任务所需时间对应人类需要10分钟,那么7个月后,这一时间将缩短至20分钟。 加速趋势:2024年,AI能力的增长速度进一步加快,部分最新模型的能力每3个月翻一番。 未来预测:按照这一趋势,预计5年后(即2030年左右),AI将能够完成许多当前需要人类花费一个月时间才能完成的任务。 研究方法 METR团队通过以下步骤验证了这一规律: 任务设计:设计了170个多样化任务,涵盖软件工程、机器学习、网络安全等领域,并测量人类专家完成这些任务所需的时间,建立“人类基准线”。 指标引入:提出了“50%-任务完成时间跨度”指标,即AI在50%成功率下完成任务的时间长度。这一指标对数据分布的微小变化具有鲁棒性。 模型评估:评估了2019年至2025年间发布的13个前沿AI模型(如GPT系列、Sonnet 3.7等),通过逻辑回归分析计算每个模型的时间跨度。 验证与外部实验 为了验证结果的可靠性,研究团队进行了多项外部实验,包括: 回溯预测:使用2023-2025年数据验证趋势一致性。 任务混乱度分析:评估任务复杂性对AI性能的影响,发现AI在复杂任务上的提升速度与简单任务相似。 基准测试:在SWE-bench等数据集上验证了类似的指数增长趋势。 意义与影响 技术进步:这一发现标志着AI在执行长期任务能力上的显著进步,可能推动AI在软件开发、研究等领域的广泛应用。 劳动力市场影响:AI能力的快速提升可能对劳动力市场产生深远影响,未来或替代部分人类工作,尤其是重复性和耗时任务。 社会挑战:研究提醒社会各界需关注AI技术进步带来的就业和经济挑战,并提前制定应对策略。 未来展望 METR团队预测,按照当前趋势,AI可能在2028年11月达到一个月的任务时间跨度,保守估计则在2031年2月实现。尽管研究存在任务局限性和未来不确定性,但团队确信AI能力每年有1~4倍的增长趋势。 这项研究为AI技术的发展提供了新的量化标准,同时也引发了对AI未来应用和影响的深入思考。

10 个月前
阿里推出新夸克,集成AI对话、深度搜索、深度执行等功能,标志着其从搜索引擎向AI Agent的转型。 新夸克接入通义系列模型,用户规模超2亿,DAU达3430万,位居AI应用榜首。

1 年前
腾讯两大智能体平台:腾讯元器和 AppAgent。

1 年前
Anthropic 于2024年12月发布的文章《Building effective agents》详细探讨了如何构建高效的大语言模型(LLM)代理系统。Anthropic 与数十个团队合作构建了跨行业的大语言模型(LLM) agent。最成功的实现往往不是使用复杂框架或专门库,而是采用简单、可组合的模式。本文分享Anthropic 的经验和实用建议: 1. 代理(Agents)的定义与分类 代理的定义: 代理可以被定义为完全自主的系统,能够在较长时间内独立运行,使用各种工具完成复杂任务。 也可以指遵循预定义工作流程的系统,这些系统通过预定义的代码路径协调LLM和工具。 工作流(Workflows)与代理(Agents)的区别: 工作流:通过预定义的代码路径编排LLM和工具,适合任务明确、步骤固定的场景。 代理:LLM动态指导自身的流程和工具使用,保持对任务完成方式的控制,适合需要灵活性和模型驱动决策的场景。 2. 何时使用代理 适用场景: 当任务复杂且需要灵活性和模型驱动的决策时,代理是更好的选择。 代理适合处理开放性问题,尤其是难以预测步骤或无法硬编码固定路径的任务。 不适用场景: 对于任务明确、步骤固定的场景,工作流提供更高的可预测性和一致性。 对于许多应用,优化单个LLM调用(配合检索和上下文示例)通常已足够。 3. 框架的使用建议 常用框架: LangGraph(LangChain)、Amazon Bedrock的AI Agent框架、Rivet(拖放式GUI工具)、Vellum(复杂工作流构建工具)。 使用建议: 开发者应优先直接使用LLM API,许多模式只需几行代码即可实现。 如果使用框架,需理解底层代码,避免因框架的抽象层增加调试难度和复杂性。 4. 构建模块与工作流模式 基础构建模块:增强型LLM 增强型LLM通过检索、工具使用和记忆等功能扩展能力,能够生成搜索查询、选择工具并保留重要信息。 核心工作流模式: 提示链(Prompt chaining):将任务分解为一系列步骤,每个LLM调用处理前一步的输出。适用于可分解为固定子任务的场景,如生成营销文案并翻译。 路由(Routing):对输入分类并引导至专门的后续任务。适用于复杂任务,如客户服务查询的分类处理。 并行化(Parallelization):将任务拆分为并行子任务或多次运行以获得多样化输出。适用于需要多视角或高置信度结果的场景。 编排者-执行者(Orchestrator-workers):中央LLM动态分解任务并分配给执行者LLM。适用于无法预测子任务的复杂场景,如编程任务。 评估者-优化者(Evaluator-optimizer):一个LLM生成响应,另一个提供评估和反馈。适用于需要迭代优化的任务,如文学翻译或复杂搜索。 5. 代理的实现与应用 代理的工作流程: 代理通过用户指令或交互明确任务,独立规划并执行,必要时向用户寻求反馈。 代理在每个步骤中从环境中获取“基准事实”(如工具调用结果)以评估进展。 适用场景: 编码代理:解决SWE-bench任务,根据任务描述编辑多个文件。 计算机使用代理:Claude通过计算机完成任务,如数据处理或信息检索。 6. 核心原则与总结 核心原则: 简单性:从简单设计开始,逐步增加复杂性。 透明性:明确展示代理的规划步骤。 工具设计:通过完善的文档和测试设计代理-计算机接口(ACI)。 总结: 成功的关键在于构建适合需求的系统,而非最复杂的系统。 框架可帮助快速启动,但在生产环境中应减少抽象层,使用基础组件构建。 7. 附录:代理的实际应用 客户支持:结合聊天机器人界面与工具集成,适用于开放式代理场景。 编码代理:在软件开发中,代理通过自动化测试验证代码解决方案,并迭代优化。 这篇文章为开发者提供了构建高效代理系统的实用指南,强调了简单性、透明性和工具设计的重要性,并通过丰富的案例展示了代理系统的实际应用价值。
Minimax(海螺AI)已由大模型名Minimax替换原海螺AI。现海螺AI为Minimax视频生成产品名。
海螺AI