MATCH (n:Disease {name: '肺炎'}) RETURN n;
MATCH (m:Drug)-[r:治疗]-(d:Disease) WHERE m.name = '阿莫西林' RETURN d;
MATCH p=(d:Doctor)-[di:诊断]-(p:Patient)-[ud:使用药物]-(m:Drug) RETURN p;
1 个月前
从传统认知来看,算力、算法和数据被认为是人工智能的核心三大要素。当大模型出现后,大模型在当前人工智能发展中占据着极其重要的地位。 大模型与算法的关系:从属而非取代。传统算法的定位:算法本质是解决问题的步骤规则,如SVM、随机森林等,是AI的底层方法论。 大模型的本质:大模型是算法的一种高级形态,依托深度学习(尤其是Transformer架构)实现,其核心仍是算法逻辑的演进。例如,GPT的生成能力源于自注意力机制(算法创新),而非脱离算法的新存在。 大模型为何需要独立强调? 尽管大模型属于算法范畴,但其独特性使其具备基础设施属性: 平台化能力:如GPT-4可作为基础平台,支撑多样下游任务(写代码、客服、科研),类似操作系统。 资源门槛:训练大模型需超算集群和千亿级数据,远超传统算法,成为独立的技术-资源综合体。 生态影响:催生模型即服务(MaaS),改变行业分工(如企业无需自研模型,调用API即可)。 AI的核心能力确实高度依赖于数据、算力和大模型,但这三者并非全部。它们是推动现代AI发展的基础设施,但真正的核心能力还需结合其他关键要素,以下分层次解析: 1. 数据、算力、大模型的角色 数据:AI的“燃料”,尤其是监督学习和自监督学习依赖海量标注或无标注数据(如GPT-4训练用了数万亿词元)。 算力:硬件(如GPU/TPU集群)支撑大规模训练和推理,例如训练GPT-4需数万块GPU和数月时间。 大模型:通过参数量的增加(如千亿级参数)实现更强的泛化和多任务能力,如Transformer架构的涌现能力。 2. 被忽视的核心要素 算法创新: 数据与算力的价值需通过算法释放。例如,Transformer(2017)相比RNN的突破、扩散模型对生成任务的改进,均源于算法设计。 小样本学习(Few-shot Learning)、强化学习的策略优化(如PPO算法)证明:算法效率可弥补数据或算力的不足。 工程能力: 分布式训练框架(如Megatron、DeepSpeed)、模型压缩(量化、蒸馏)等技术,决定大模型能否实际落地。 领域知识: 医疗AI依赖专家标注和病理学知识,自动驾驶需融合传感器物理模型,说明垂直场景的壁垒远超大模型本身。 3. 未来趋势:超越“大力出奇迹” 高效训练与推理: 低功耗芯片(如神经拟态计算)、MoE架构(如Mixtral 8x7B)正降低对算力的依赖。 数据质量 vs 数量: 合成数据(如NVIDIA Omniverse)、数据清洗技术逐步减少对纯数据量的需求。 可解释性与安全: 模型对齐(Alignment)、因果推理等能力将成为下一代AI的竞争焦点(如Anthropic的Claude 3)。 4. 总结:AI的核心能力是“系统级创新” 短期:数据、算力、大模型是入场券; 长期:算法设计、跨学科融合(如神经科学)、工程优化、伦理治理等系统性能力才是关键。 类比:如同火箭需要燃料(数据)、引擎(算力)、设计(模型),但真正的突破来自材料科学(算法)与控制系统(工程)。 未来AI的竞争将不仅是资源的堆砌,而是如何用更少的资源解决更复杂的问题,这需要多维度的创新能力。
1 个月前
数据标签业务(Data Annotation / Data Labeling)是人工智能(AI)产业链中的重要环节,主要为机器学习模型提供高质量的训练数据。随着人工智能技术的广泛应用,中国的数据标注行业迎来了巨大的商业机遇,同时也面临一系列挑战。本文将从市场需求、政策环境、技术发展、产业竞争等多个维度进行分析。 一、数据标签业务的商业机遇 1. AI产业高速发展带动数据需求增长 中国人工智能产业正在快速发展,自动驾驶、智能客服、智能安防、医疗AI等领域对高质量数据标注的需求不断增长。例如: 自动驾驶:需要海量的图像、视频数据进行道路标注,如车道线、行人、交通标志等。 智能医疗:需要专业医学影像数据标注,如CT、MRI图像的病变区域标注。 电商与内容推荐:需要大量的文本、语音、图像数据进行分类、情感分析等标注。 数据质量直接决定了AI模型的性能,因此高质量的数据标注服务成为AI企业的刚需。 2. 中国具备全球领先的“数据优势” 中国的互联网和移动应用市场庞大,数据量丰富,包括社交、购物、金融、交通、医疗等多个领域的数据资源。相比欧美国家对数据隐私的严格监管,中国本土市场的数据可获取性更强,为数据标注业务提供了丰富的原材料。 3. 人力成本相对较低,适合规模化发展 尽管中国的劳动力成本逐年上升,但相比欧美仍然较低,特别是在三、四线城市和农村地区。大量低技术工人可以通过简单培训参与数据标注工作,形成规模化的数据加工产业链。 4. 政策支持及人工智能发展战略 中国政府高度重视人工智能发展,出台多项支持政策,如《新一代人工智能发展规划》,鼓励企业布局AI数据相关业务。此外,地方政府也在推动“AI+产业”落地,为数据标注公司提供政策支持、产业园区资源等。 5. 行业逐步向标准化、自动化升级 随着AI技术的发展,数据标注行业正在向更高效的方向演进: 半自动化标注:利用预训练AI模型辅助人工标注,提高效率。 智能质量控制:采用机器学习算法对标注数据进行自动审核,减少人工错误。 行业标准化:政府与企业推动建立统一的标注标准,提高数据质量。 这些趋势有助于降低成本、提高效率,使数据标注企业更具竞争力。 二、数据标签业务的商业挑战 1. 低端市场竞争激烈,价格战严重 数据标注行业进入门槛较低,导致大量小公司涌入市场,尤其是低端手工标注业务竞争激烈,利润率较低。许多企业通过压低价格争夺订单,导致行业整体盈利能力下降。行业集中度低,超500家中小标注企业竞争,图像标注单价从0.5元/张降至0.2元/张(2020-2023年),毛利率普遍低于15%。 2. 数据隐私与安全监管趋严 随着《数据安全法》《个人信息保护法》等法规的实施,数据使用的合规性要求提高,许多企业在数据收集和处理过程中需要满足严格的合规要求。这对数据标注企业提出更高的合规成本,如: 数据脱敏处理:需要去除敏感信息,增加处理成本。 数据存储合规性:要求数据存储在国内,并满足安全要求。 3. 业务同质化,缺乏技术壁垒 目前市场上的数据标注公司大多依赖人力,缺乏自主技术创新,难以形成核心竞争力。随着AI自动化标注技术的进步,传统的纯人工标注模式可能被取代,低端数据标注公司面临淘汰风险。 4. AI自动化标注技术的冲击 AI本身的发展正在威胁传统人工数据标注市场。例如: 计算机视觉:自动图像识别和标注技术正在进步,减少人工标注需求。 自然语言处理(NLP):自动文本分析工具可以降低文本标注的人工需求。 虽然完全替代人工标注还需时间,但对于低难度标注任务,AI已经可以大幅减少人工参与。 5. 客户集中度高,议价能力低 目前中国数据标注市场的大客户主要是科技巨头(如BAT、华为、字节跳动等),这些企业的议价能力极强,小型标注公司难以获取高利润订单。此外,大型科技公司正在自建数据标注团队,减少对外部供应商的依赖,使数据标注企业的市场空间进一步压缩。 三、未来发展方向与建议 1. 向高价值标注业务转型 企业应避免陷入低端市场的价格战,转向更专业化、高价值的标注领域,如: 医疗AI标注(高精度医学影像、基因数据) 自动驾驶高精度3D点云标注 金融数据标注(信用风险评估、反欺诈分析) 这些领域要求专业知识,竞争相对较小,利润率更高。 2. 发展智能标注平台,提高自动化水平 企业应开发自有标注平台,结合AI自动化工具,提升标注效率。例如: 采用预标注+人工审核模式,提高效率。 发展众包平台,让自由职业者参与标注任务,降低成本。 引入区块链溯源技术,提高数据可信度。 3. 加强数据安全与合规管理 数据合规是未来发展的关键,建议: 采用数据脱敏技术,确保用户隐私安全。 获得ISO 27001信息安全认证,增强市场信任度。 避免使用敏感数据,规避法律风险。 4. 拓展海外市场 相比中国市场竞争激烈,欧美市场的数据标注需求仍然较大,且愿意支付更高的价格。可以通过合作或跨境平台提供数据标注服务,拓展海外业务。 5. 与AI企业深度合作,提供定制化服务 与AI企业建立深度合作,提供更符合客户需求的标注服务,如: 嵌入式标注服务(在AI开发平台上直接提供标注服务) 数据增强+标注(同时提供数据扩增和标注服务) SaaS模式标注平台(提供在线标注工具,企业自行标注) 四、结论 中国的数据标签行业正处于快速发展阶段,市场潜力巨大,但也面临激烈竞争和技术变革带来的挑战。未来,企业应摆脱低端市场竞争,向高价值、智能化、合规化方向发展,才能在行业中占据更有利的位置。同时,通过国际化布局和技术创新,也能进一步拓展市场空间,实现长期增长。 (图片来源:levity.ai)
3 个月前
图形数据库(Graph DB)是一种专门用于存储和处理图形结构数据的数据库。
4 个月前
中美 AI 竞争已进入白热化阶段,技术差距的缩小、数据瓶颈的突破以及地缘政治的影响将成为未来 AI 发展的关键因素。
8 个月前
当将 RAG 企业落地时,以下是一些需要注意的事项: 数据质量与管理: 确保数据的准确性、完整性和一致性。对用于检索的知识库进行严格筛选和清理,去除错误、过时或不相关的信息,以免影响生成结果的质量。 建立有效的数据更新机制,以保证知识库中的信息能够及时反映最新的知识和业务动态。例如,定期更新文档、数据库记录等。 对数据进行分类和标记,便于在检索时能够准确地定位到相关内容。这可能涉及到制定合适的分类体系和标签规则。 查询处理与优化: 针对不规范的查询和短查询,采用合适的处理方法。例如,通过意图分析确定用户意图,缩小召回范围;进行关键词提取,以便根据关键词进行检索;或者主动向用户提问以获取更多信息,从而使查询更加明确。 优化查询的性能和效率,避免出现响应时间过长等问题。可以通过选择合适的索引技术、优化检索算法等方式来提高查询速度。 集成结构化数据:如果企业中存在结构化数据(如关系数据库、Excel 文件等),需要考虑如何将其有效地整合到 RAG 流程中。这可能需要开发相应的数据接口或转换工具,以确保结构化数据能够与非结构化数据一起被检索和利用,为生成更全面和准确的回答提供支持。 模型选择与调优: 根据企业的具体需求和应用场景,选择合适的 RAG 模型架构和相关技术。不同的开源框架或商业解决方案在功能、性能、可扩展性等方面可能存在差异,需要进行充分的评估和比较。 对所选的模型进行调优,包括调整参数、优化训练过程等,以提高模型在企业数据上的表现。例如,可以使用特定领域的数据集进行进一步的微调,使模型更好地适应企业的业务知识和语言特点。 结果评估与反馈: 建立评估指标体系,对 RAG 生成的结果进行客观的评估。这可以包括准确性、相关性、可读性等方面的指标,通过与人工标注的结果进行对比或进行用户满意度调查等方式来衡量生成结果的质量。 根据评估结果,及时收集反馈信息,以便对模型和系统进行进一步的改进和优化。例如,如果发现某些类型的问题经常出现错误回答,可以针对性地调整数据或模型。 安全与隐私保护: 确保企业数据的安全,采取措施防止数据泄露、未经授权的访问等问题。这可能涉及到数据加密、访问控制、安全审计等方面的技术和管理措施。 如果处理的是包含个人隐私信息的数据,必须严格遵守相关的隐私法规和政策,对用户隐私进行保护。例如,在数据收集、存储和使用过程中,明确告知用户并获得其同意,对敏感信息进行脱敏处理等。 可扩展性与兼容性: 考虑企业未来的发展和业务扩展需求,选择具有良好可扩展性的 RAG 解决方案。这包括能够支持更大规模的数据量、更多的用户访问以及更复杂的应用场景等。 确保 RAG 系统与企业现有的技术架构和软件系统具有良好的兼容性,能够方便地进行集成和对接。例如,与企业的业务系统、数据库、应用程序等进行无缝连接,以实现数据的共享和交互。 用户体验与界面设计: 设计友好、直观的用户界面,使用户能够方便地输入查询并理解生成的回答。提供清晰的操作指引和反馈信息,降低用户的使用门槛和学习成本。 优化生成结果的呈现方式,使其易于阅读和理解。例如,对长篇幅的回答进行分段、突出关键信息、提供相关的参考资料或链接等。 成本控制与效益分析: 评估 RAG 项目的成本,包括技术采购、数据处理、模型训练、系统维护等方面的费用,确保在企业的预算范围内。 分析 RAG 系统为企业带来的效益,如提高工作效率、改善客户服务、创造新的业务机会等,以证明项目的投资价值。通过持续的效益分析,不断优化 RAG 系统的应用策略,以实现最大的收益。 法律合规性:了解并遵守相关的法律法规,特别是在涉及知识产权、内容创作、数据使用等方面。确保 RAG 生成的内容不侵犯他人的版权、商标权等合法权益,避免可能的法律风险。 总之,RAG 企业落地需要综合考虑技术、数据、业务、用户等多个方面的因素,通过精心的规划、实施和不断的优化,才能实现其在企业中的有效应用和价值最大化。在实施过程中,建议与专业的技术团队、法律顾问等进行合作,以确保各项工作的顺利进行。
8 个月前
RAG 技术在不同行业的广泛应用和巨大潜力,企业利用RAG技术激活企业内如数据,让企业再次焕发生命力!
8 个月前
在 AI 在自然语言处理等任务中,“chunk”可以理解为“组块”。 它指的是将文本或数据分割成较小的、有意义的单元或片段。
8 个月前
全球数据库技术人才超十万,中国人才规模逐年扩大,内核高级开发人才需求提升。 云计算、图技术、湖仓一体等技术与数据库融合,推动数据处理性能提升。 向量数据库、多模数据库、全密态数据库、时空数据库等新兴技术逐步落地应用。
9 个月前
Amazon Q是一款功能最强大的生成式 AI 助手,用于加速软件开发和利用业务数据。
9 个月前
知识图谱(Knowledge Graph) 是一种基于语义网络的知识表示形式,用于描述现实世界中的实体、概念及其之间的关系。