202年11月3日,云栖大会杭州现场,阿里达摩院联手CCF开源发展委员会共同推出AI模型社区“魔搭”ModelScope,旨在降低AI的应用门槛。首批合作方还包括澜舟科技、智谱AI、深势科技、哈工大讯飞联合实验室、中国科学技术大学等多家科研机构。达摩院等率先向社区贡献300多个经过验证的优质AI模型,超过三分之一为中文模型,全面开源开放。
魔搭社区重点关注AI的应用难题。为什么AI应用难?
首先是开发门槛高,模型开发往往需要大量数据的准备,以及匹配的海量GPU算力。通常只有大公司才有这方面的投入,对于中小企业则存在一定的难度。
其二是模型的定制化需求高,在具体的问题上面,通用的模型效果不是特别好,还得做相应的定制化微调,这对开发人员提出了很高的要求。
第三是今天模型众多,调用方式不同,AI开发者需要查看很多的资料,来修改这个那个参数,使用不同模型的难度比较大。
最后,目前在国内没有通用的模型交流平台,缺乏系统化的模型分享渠道。这也导致了查找模型、比较不同模型效果的门槛较高,最终导致模型交流分享的困难。
什么是模型即服务?
为了解决这些实际的AI应用困难,达摩院提出了模型即服务Model as a Service的理念,魔搭社区就是践行这种理念的产品。过去,我们通常会把硬件资源、通用的软件能力、底层框架等来提供服务,现在,模型也上升到底层框架服务的维度,开始成为第一生产力。
与此同时,魔搭社区将模型、数据和算法有机结合起来,来降低模型体验的门槛,让模型能够被快速的被使用,并且能快速的被微调,最终让适合具体业务场景的微调后的模型,能快速云端部署。
达摩院希望通过模型即服务的理念,实现 AI for Everyone。无论是AI兴趣者,使用者,开发者还是研究人员,都能够在魔搭社区,很好的使用模型解决实际的问题。
模型丰富 中文特色
魔搭社区首批上架模型超过300个,覆盖了视觉、语音、自然语言处理、多模态等AI主要领域,覆盖任务超过60个。上架模型均经过专家筛选和效果验证,包括150+SOTA(业界领先)模型和十多个大模型,均已开源代码或开放使用。
社区鼓励中文模型的开发和使用,希望实现中文模型的丰富供给,并更好满足本土需求。目前已上架的中文模型超过100个,总量占比超过三分之一,其中包括一批探索人工智能前沿的中文大模型,如阿里通义大模型系列、澜舟科技的孟子系列模型、智谱AI的多语言预训练大模型。
展开来说:
在计算机视觉领域,社区开源了多种视觉任务近百个模型,覆盖多模态图文表征大模型、图像/视频生成大模型,以及各类下游迁移应用模型,既有SOTA的技术热门模型,也有久经考验的应用模型,包括最基本的视觉理解,如识别分类、目标检测、分割抠图等,也包括视觉生产中的画质增强、图像编辑、内容生成等大类,初步构建了以多模态生成和表征大模型为基础的开源模型体系。为AI开发者提供丰富的、一站式的视觉AI模型选择。
在自然语言处理领域,社区提供了包括 structBert, PALM, mPLUG, 中文GPT3等预训练模型为底座,共计100+ NLP 应用模型,涵盖了分词,词性, 命名实体识别等基础技术,文本分类,情感分类,对话问答,OCR, 机器翻译等应用技术。既有基于预训练模型finetune的多种任务模型(作诗,小说续写),又有取得了VQA首次超人类,机器翻译最佳论文等的业界领先技术,还涵盖了包括通用,新闻,电商,医疗等多领域,中,英,法,西等10+语言的多语言模型。从模型深度,广度,学术界数据集到应用场景,都提供了丰富易用,性能领先的模型库。
在智能语音领域,社区覆盖语音识别、语音合成、语音信号处理、语音唤醒等语音领域最主流的能力,首批上线逾40个模型。其中,“UniASR语音识别通用领域模型”阿里云语音识别API背后的模型,这次通过魔搭社区免费开放,这种开放公共云背后的算法模型的做法在业界尚属首例。开发者可基于该模型,通过领域数据finetune进一步增强垂直领域语音识别准确率。“SAMBERT高表现力多情感语音合成模型”同样是阿里云语音合成API背后的算法模型。达摩院还同步开源了SAMBERT模型训练代码和流程。通过魔搭社区开放,任何有高品质录音数据的模型开发者均可制作出与达摩院同样品质的语音合成音色。“Paraformer语音识别模型”是达摩院下一代非自回归端到端语音识别模型,刚刚于InterSpeech-2022发表,即已通过魔搭分享给业界。Paraformer是当前学术界在非自回归技术路线上研究探索的SOTA模型之一。模型结构先进,相比自回归模型在保持精度的同时,在推理效率上最高能达到10倍提升,将有效降低语音识别线上服务的成本。
在多模态领域(所谓多模态模型,就是跨越文本、图像、声音等多种数据类型之间的理解和生成问题,人处理任务通常也是以多模态的方式进行。),魔搭社区这次也提供了丰富的多模态模型矩阵。它不仅包含了不同类型的图文多模态预训练模型,比如我们提供了一个原生CLIP模型的中文版,以及像OFA/Team/mPLUG这样自研的多模态预训练模型;同时魔搭也包含了使用这类模型创建的包括图像描述、视觉定位、视觉问答、图文检索等各类多模态典型任务。(另外,为了满足不同部署条件的开发者,我们很多模型都有不同规模的版本可供选择。社区同样也可以很方便的在这些预训练模型,或者他们的下游模型上进行二次开发。)
此外,社区还在AI for Science等新领域积极拓展,深势科技在社区开源了蛋白质折叠预测模型和3D分子模型。
魔搭社区的使用优势
魔搭社区提供模型的索引和发现功能,AI模型都有自己的标签和相应的索引,让不同的模型使用者,能够根据自己的需求,快速的找到相应的模型。每个模型都配套一个详细的模型的卡片来描述模型背后的机理,以及相关的一些文献。
魔搭社区也提供在线体验的能力,能够让众多使用者能够快速的在不开发代码的情况下,去体验各种模型的效果。社区还提供相关的模型开发的代码,引导社区的开发者以编程的方式,结合社区的python library,快速使用模型。除了模型以外,社区同时还提供了丰富的数据集。帮助模型进行训练和调优。而社区分享频道,方便模型的使用者和开发者能够方便的交流心得和体会,推动模型的应用。
ModelScope魔搭社区覆盖全频谱的使用/开发者
为了构建这些完整的平台体验,魔搭提供了一个功能强大的开源Python package,package提供了不同模型接入魔搭生态的接口和实现,底层能够兼容各种机器学习框架,无缝衔接模型应用与开发。只需要import对应的python package,通过简单的一行代码,就可以完成模型的发现,模型的自动下载,以及模型的加载和使用。在体验过模型后,还可以方便的一站式的部署到云端,供APP使用。
技术架构图
模型的开发离不开算力,魔搭社区的生态和云的生态实现了无缝的集成。阿里云为魔搭社区提供了一定的免费的算力,来促进社区的快速发展。同时魔搭社区和多种云产品结合,如阿里云弹性加速计算EAIS和机器学习平台PAI,覆盖了模型的开发的方方面面。从魔搭社区,用户们可以进行开发,并能够快速的连接到云生态。能够完善今天整个模型的开发的链路。
值得注意的是,魔搭社区坚持开源开放,框架兼容各种机器学习的框架,通过这样的方式,不仅阿里巴巴各个团队的模型都可以轻松的接入社区,同时外部的科技公司和高校也可以通过这样的方式,快速接入各种模型。
欢迎大家来使用魔搭社区!
modelscope.cn
1 个月前
3月6日凌晨,阿里巴巴发布并开源全新的推理模型通义千问QwQ-32B: 模型性能 媲美大参数模型:拥有320亿参数,性能可与具备6710亿参数(其中370亿被激活)的DeepSeek - R1媲美,很大程度上证明了参数规模不再是模型性能的决定性因素。 超越同类模型:在一系列权威基准测试中表现出色,几乎完全超越了OpenAI去年9月发布的尺寸相近的o1 - mini模型。在测试数学能力的AIME24评测集、评估代码能力的LiveCodeBench中,表现与DeepSeek - R1相当,远胜于o1 - mini及相同尺寸的R1蒸馏模型;在LiveBench、谷歌提出的IFEval评测集、加州大学伯克利分校等提出的BFCL测试中,得分均超越了DeepSeek - R1。 技术特点 本地部署优势:突破性地让高性能推理模型在消费级显卡上实现本地部署,英伟达4090的增强版就能部署,大幅降低了模型应用成本,成本是R1的1/10以内,更利于推理模型的应用和普及。 集成Agent能力:集成了与智能体(Agent)相关的能力,使其能够在使用工具的同时进行批判性思考,并根据环境反馈调整推理过程。 大规模强化学习:在冷启动的基础上,针对数学和编程任务、通用能力分别进行了两轮大规模强化学习,在32B的模型尺寸上获得了令人惊喜的推理能力提升,印证了大规模强化学习可显著提高模型性能。与依赖传统的奖励模型不同,通过校验生成答案的正确性来为数学问题提供反馈,并通过代码执行服务器评估生成的代码是否成功通过测试用例来提供代码的反馈。 开源情况:采用Apache 2.0开源协议,已在魔搭社区、HuggingFace及GitHub等平台开源,所有人都可免费下载及商用QwQ - 32B模型,可通过网页版Qwen Chat进行体验,也将免费上架通义APP。
2 个月前
随着人工智能技术的飞速发展,越来越多的企业和开发者开始将目光投向这一领域。作为阿里巴巴集团旗下的通义实验室自主研发的超大规模语言模型,通义千问(Qwen)始终致力于为用户提供更加智能、便捷的服务体验。通义千问近日正式启用了全新的AI Chat域名及界面——chat.qwen.ai!这不仅是一次简单的域名更新,更是我们在用户体验优化和服务升级方面迈出的重要一步。 全新域名:简洁易记,专业高效 从现在起,用户只需访问 chat.qwen.ai,即可快速进入通义千问的AI对话平台。相比之前的入口,新域名更加简洁直观,便于记忆与传播。无论是个人用户还是企业开发者,都能通过这个统一的入口,轻松获取到所需的服务和支持。 简洁性:新域名去掉了冗余的部分,让用户一目了然。 专业性:明确指向“Chat”功能,突出我们的核心竞争力——强大的自然语言处理能力。 全球化:采用国际通用的“.ai”后缀,彰显我们在人工智能领域的领先地位。 界面焕新:更友好、更智能 除了域名的变化,通义千问的界面也进行了全面升级。新的设计风格更加现代化,操作流程更加流畅,旨在为每一位用户提供极致的交互体验。 1. 清晰的布局 新界面采用了更加清晰的功能分区,首页即展示了主要功能模块,如文本生成、代码编写、多语言支持等。无论你是初次使用还是资深用户,都能迅速找到自己需要的内容。 2. 个性化设置 用户可以根据自己的偏好调整聊天窗口的主题颜色、字体大小等细节,打造专属的使用环境。此外,我们还新增了夜间模式,让深夜工作的你也能舒适地与AI交流。 3. 增强的多轮对话能力 在新版界面中,通义千问的多轮对话功能得到了进一步加强。系统能够更好地理解上下文信息,提供连贯且精准的回答。即使面对复杂的问题或场景切换,也能保持高度的准确性。 4. 丰富的插件支持 为了满足不同用户的需求,我们引入了多种实用插件,例如文档解析、图像生成、视频编辑等。这些插件可以无缝集成到主界面中,极大提升了工作效率和创作灵感。 核心亮点:技术创新驱动优质服务 1. 超大规模参数量 基于阿里云强大的计算资源,通义千问拥有超过万亿级别的参数规模,确保了模型的强大表达能力和泛化性能。这种规模的优势使得通义千问能够在各种任务上表现出色,无论是生成高质量的文章、撰写复杂的代码,还是进行多语言翻译,都能游刃有余。 2. 多模态融合 除了传统的文本处理外,通义千问在图像、音频等领域也取得了突破性进展,真正实现了跨模态的理解与生成。例如,通义万相是通义实验室推出的一站式AI艺术创作平台,它结合了文生图、图像风格迁移、手绘草图生成精美图片等能力,为用户提供丰富的创意工具。 3. 安全与隐私保护 我们深知数据安全的重要性,因此在新版本中进一步加强了加密措施,保障用户信息安全无忧。阿里云一直致力于构建一个安全可靠的技术平台,确保用户的隐私和数据得到妥善保护。 4. 高效推理与训练 通义千问依托阿里云的高效推理和训练框架,能够在短时间内完成大量数据的处理和学习。这种高效的处理能力使得通义千问能够快速适应新的应用场景和需求,为用户提供更加及时和准确的服务。 5. 广泛的行业应用 通义千问已经在多个行业中得到了广泛应用,包括电商、金融、医疗、教育等。例如,在电商领域,通义千问可以帮助商家自动生成商品描述、回答客户咨询;在金融领域,它可以协助分析师进行市场预测和风险评估;在医疗领域,它可以辅助医生进行疾病诊断和治疗方案推荐。 结语 随着 chat.qwen.ai 的上线,通义千问将以全新的姿态迎接每一位用户的到来。未来,我们将继续秉承“让机器更好地服务于人”的理念,不断探索前沿技术,努力为全球用户带来更多惊喜。如果你还没有尝试过通义千问,请立即访问 chat.qwen.ai,开启属于你的智能之旅吧!
2 个月前
如何整合大模型API并提供开发者服务 随着人工智能技术的快速发展,越来越多的开发者希望在自己的应用中集成AI能力,如自然语言处理、图像生成、语音识别等。如果你计划搭建一个AI平台,并向开发者(B2C)提供AI API服务,那么本文将详细介绍如何整合现有大模型的API,并成为官方分销商。 1. 选择合适的大模型API 当前市场上已有多个强大的AI大模型提供API服务,以下是几家主流供应商: OpenAI(ChatGPT/GPT-4):适用于通用对话、文本生成、代码补全等。 Anthropic(Claude):擅长安全对话和长文本理解。 Google Gemini(原Bard):适合多模态(文本、图像)AI应用。 Mistral AI:提供高效、开源的AI模型,适合灵活集成。 Hugging Face:开放API,可用于多种NLP任务。 Stable Diffusion/DALL·E:用于图像生成。 Whisper API:优秀的语音识别能力。 选择API时,需要考虑成本、调用限制、商业许可、模型能力等因素。 2. 如何获得大模型API的分销权限? 如果你希望不仅是API的用户,还能将API分发给开发者,需要与AI公司建立更深层次的合作关系。不同公司有不同的合作方式: OpenAI(ChatGPT/GPT-4) 标准API使用:直接在OpenAI官网注册并获取API Key。 企业级API访问:通过 OpenAI Enterprise 申请更高额度的API。 成为OpenAI API Reseller(API分销商):需要直接联系OpenAI商务团队(sales@openai.com)并提供业务计划,通常要求较大的流量或消费额度。 Anthropic(Claude) 访问 Anthropic API 并申请企业合作。 需要提供详细的业务应用场景,并确保数据安全合规。 直接联系 sales@anthropic.com 申请API分销权限。 Google Gemini(原Bard) 使用 Google AI Studio 获取API。 申请Google Cloud AI企业级API,并与Google商务团队合作。 通过 Google Cloud AI Solutions 申请大规模API使用权限。 Mistral AI 访问 Mistral API 并申请企业级合作。 直接联系 Mistral 商务团队申请API分销许可。 Hugging Face 访问 Hugging Face Inference API。 联系 Hugging Face 申请企业API许可,并可能合作进行API优化。 3. 技术架构:如何整合多个API? 如果你希望提供一个集成多个AI API的服务平台,你需要构建一个API管理系统,包括: (1)API网关与管理 API网关(API Gateway):使用 Kong、AWS API Gateway、Apigee 统一管理所有API。 身份认证(Authentication):使用 JWT Token 或 OAuth2 进行用户管理。 负载均衡与缓存:结合 Redis 或 Cloudflare 优化API请求速度。 (2)用户管理与计费系统 API密钥管理:允许用户注册并申请API Key。 调用监控与限流:防止滥用,确保稳定性。 计费系统:使用 Stripe、PayPal 提供按量计费或订阅计划。 (3)前端支持与开发者体验 API文档:使用 Swagger UI 或 Redoc 提供清晰的API说明。 SDK支持:开发 Python/Node.js SDK 方便开发者集成。 在线测试环境:允许开发者在Web端试用API调用。 4. 商业模式:如何盈利? 如果你计划向开发者提供API服务,可以采用以下盈利模式: (1)免费+付费模式 提供 免费调用额度(如每月100次),超出后按量付费。 按不同模型提供不同的价格(GPT-4 高级版 vs GPT-3.5 免费版)。 (2)订阅模式 个人套餐:低价格,适合独立开发者。 企业套餐:支持高并发调用,并提供专属API密钥。 定制服务:为大型企业或团队提供专属AI API。 (3)增值服务 提供高优先级的API访问,减少延迟。 允许用户定制API模型参数,提高个性化。 结合其他工具,如AI自动化工作流、数据分析等。 5. 未来展望 随着AI技术的普及,越来越多的开发者希望将大模型能力集成到他们的产品中。如果你能整合多个AI API,并提供易用的开发者服务,将能在这一市场获得先机。通过与OpenAI、Anthropic、Google等公司建立合作,并搭建高效的API管理系统,你可以打造一个强大的AI API分发平台,为全球开发者提供优质的AI服务。 如果你有意向进入这一领域,不妨立即申请各大AI公司的企业级API,并开始搭建你的API分发平台!
2 个月前
高盛报告:阿里巴巴领衔AI基建,腾讯主导AI应用领域 2月14日,高盛发布最新研究报告,揭示了中国互联网行业在人工智能(AI)技术快速发展背景下的新格局。报告指出,行业正逐渐分化为两大阵营:AI基础设施建设和AI应用开发。阿里巴巴凭借其强大的云服务基础设施,成为AI基建领域的关键力量;而腾讯则依托其在消费者端(C端)应用的广泛生态和卓越用户体验,成为AI应用领域的核心推动者。 报告详细分析了两家公司的优势:阿里巴巴作为中国最大的云服务提供商,其规模优势在AI基础设施建设中占据重要地位,预计在2026财年将实现14倍的预期市盈率。腾讯则凭借其微信超级应用的潜在AI代理功能和闭环交易能力,在2025财年预期市盈率达到16倍,同时腾讯云在中国公共云市场中也稳居前三。 报告进一步预测,随着中国AI模型的灵活性和计算成本效率的显著提升,超级应用如微信和抖音将继续深化在电子商务和本地服务等交易领域的应用。此外,随着开源模型的兴起和计算成本的降低,AI的采用率将进一步提高,特别是在支持多年云和数据中心需求增长的企业端(B端)场景中。 高盛特别强调,腾讯通过其强大的C端生态和用户体验,将AI技术深度融入日常生活。报告以元宝为例,指出其快速崛起是腾讯在AI应用领域实力的体现。元宝集成了DeepSeek-R1模型的强大推理能力和腾讯云的AI推理基础设施,不仅提供了更智能的交互体验,还通过微信生态的独特内容支持,实现了更精准的信息推送和更高效的任务执行。 报告最后指出,集成R1后的元宝在用户体验上实现了质的飞跃,用户可以通过多轮对话和深度思考模式,快速获取微信公众号、视频号等生态内的丰富内容,进一步巩固了腾讯在AI应用领域的领先地位。
3 个月前
搭建工业AI咨询平台在生产调度、预测性维护、缺陷检测等场景中,AI技术能够显著提升工业企业的效率和竞争力。
4 个月前
AI时代已经来临,人们的办公桌面将会有若干的AI工具,一套AI办公桌面将会受到人们的需求。这里是开发AI桌面办公平台aidesk的一般步骤: 需求分析与规划 明确功能需求:详细列出平台需要具备的功能,如不同AI工具的集成方式、用户界面的布局与交互设计、数据的存储与管理等. 确定用户群体:针对不同的用户群体,如企业办公人员、创意工作者、学生等,了解他们对AI工具的使用习惯和需求,以便更好地设计平台功能和界面 。 规划技术架构:考虑平台的整体架构,包括前端、后端、数据库等的选型和设计,确保系统的可扩展性、稳定性和安全性. 技术选型 前端开发:可选择适合桌面应用开发的技术框架,如Electron。它基于Web技术,能够使用HTML、CSS和JavaScript构建跨平台的桌面应用,具有开发效率高、易于上手等优点,还可以使用一些UI框架如Vue.js、React等,来提升界面的开发效率和用户体验. 后端开发:根据平台的功能需求和性能要求,选择合适的后端编程语言和框架,如Python的Flask、Django,Java的Spring Boot等。后端主要负责处理业务逻辑、与AI模型进行交互、管理用户数据和权限等. AI模型集成:根据需要集成的AI工具,选择相应的AI模型和框架。常见的有用于自然语言处理的Transformer架构、用于图像识别的卷积神经网络等。可以使用现有的开源AI模型,如Hugging Face的预训练模型,也可以根据具体需求自行训练和优化模型. 数据库选择:选择适合存储用户数据、项目数据、AI模型配置等信息的数据库,如MySQL、PostgreSQL等关系型数据库,或者MongoDB等非关系型数据库. 界面设计与开发 设计界面布局:根据用户需求和操作流程,设计简洁、直观的界面布局。将常用的AI工具以列表或图标形式展示在桌面上,方便用户快速找到和使用。同时,设计合理的工作区和操作界面,用于展示和编辑AI生成的内容. 实现交互功能:使用前端技术实现用户与界面的交互功能,如鼠标拖拽、点击、右键菜单等。用户可以通过鼠标将AI工具拖拽到工作区,进行相应的操作,并能够方便地调整工具的位置和大小。 确保界面响应式设计:使界面能够自适应不同的屏幕分辨率和窗口大小,保证在各种设备上都能提供良好的用户体验. AI工具集成 了解AI工具的接口:对于要集成的AI工具,详细了解其提供的API接口或开发文档,包括输入参数、输出格式、调用方式等,以便能够顺利地与平台进行集成. 编写集成代码:根据AI工具的接口文档,使用后端编程语言编写代码,实现与AI工具的通信和交互。通过调用AI工具的API,将用户输入的数据传递给AI模型,并获取模型生成的结果,然后将结果展示在平台的界面上. 测试与优化集成效果:对集成的AI工具进行全面测试,确保其功能正常、性能稳定。根据测试结果,对集成代码进行优化和调整,提高AI工具的响应速度和准确性。 功能模块开发 智能助手:开发能够理解用户指令并执行相应任务的智能助手,支持语音和文本交互。 文件管理:实现智能文件分类、搜索和版本控制,支持跨平台文件访问。 日程安排:集成日历功能,支持智能提醒、会议安排和冲突检测。 通讯协作:集成即时通讯和协作工具,支持团队沟通和项目管理。 用户体验优化 界面设计:注重简洁、直观的界面设计,提高用户操作效率。 交互体验:优化用户交互流程,减少用户学习成本。 个性化设置:提供丰富的个性化设置选项,满足不同用户的需求。 数据管理与安全 数据存储与管理:建立有效的数据存储和管理机制,确保用户数据、项目数据、AI模型数据等的安全存储和高效检索。对数据进行分类、备份和恢复策略的制定,以防止数据丢失和损坏. 用户认证与授权:设计用户认证和授权系统,确保只有授权用户能够访问和使用平台的功能和资源。可以采用用户名/密码、OAuth等多种认证方式,并根据用户的角色和权限,限制其对不同功能和数据的访问级别. 数据安全与隐私保护:采取必要的数据安全措施,如数据加密、防止SQL注入、跨站脚本攻击等,保护用户数据的安全性和隐私性。同时,遵守相关的法律法规,确保数据的合法使用和处理. 测试与优化 功能测试:对平台的各项功能进行全面测试,包括AI工具的集成效果、界面交互的流畅性、数据存储和管理的正确性等,确保平台能够满足用户的需求和期望. 性能测试:测试平台在不同负载条件下的性能表现,如响应时间、吞吐量、资源利用率等。根据测试结果,对性能瓶颈进行优化,提高平台的运行效率和稳定性. 用户体验测试:邀请用户参与测试,收集用户的反馈和建议,对界面设计、交互流程、功能布局等进行优化和改进,提升用户体验。 部署与维护 选择部署方式:根据平台的使用场景和用户规模,选择合适的部署方式,如本地部署、云端部署或混合部署。本地部署可以提供更高的安全性和数据隐私性,但需要用户自行维护服务器;云端部署则具有更好的可扩展性和成本效益,但需要考虑数据安全和隐私问题. 部署与配置环境:按照选定的部署方式,搭建和配置相应的服务器环境、数据库环境、AI模型运行环境等。将开发好的平台代码部署到服务器上,并进行必要的配置和调试,确保平台能够正常运行. 持续维护与更新:建立持续维护和更新机制,及时修复平台的漏洞和缺陷,优化性能,添加新的功能和AI工具。关注AI技术的发展动态,不断更新和升级平台的AI模型,以提供更强大、更智能的办公体验. 插图:Arc MaxAI
5 个月前
11月12日,阿里在海外推出对话式AI搜索引擎 Accio,面向全球商家开放,这是全球第一个B2B领域的AI搜索引擎。 Accio 的页面主体是对话框,产品形态类似于 AI 搜索引擎 Perplexity,定位是个人采购代理。 当用户输入需求之后,它会通过供货商、定制范围、价格、终端零售销量、客户评价等信息筛选,输出符合的商家和商品。 Accio 意在整合全球超过 3000 万家参与跨境贸易的供应链企业信息,作为对比,阿里国际站收录的商家数量为 25 万个。
8 个月前
阿里云宣布完成其域名产品服务的AI化改造,推出首个基于通义大模型的域名AI应用,并上线了包括“.ai”在内的40多个全新热门域名后缀。
8 个月前
2024年7月5日,在世界人工智能大会“可信大模型助力产业创新发展”论坛上,蚂蚁集团公布了百灵大模型的最新研发进展:它已具备能“看”会“听”、能“说”会“画”的原生多模态能力,可以直接理解并训练音频、视频、图、文等多模态数据。
8 个月前
通义语音团队开源了语音基座大模型:SenseVoice和CosyVoice。