在人工智能领域的演进历程中,曾经,各大科技企业竞相追逐,致力于构建体量庞大的语言模型(LLM)。然而,近期风向悄然转变,一种新兴趋势悄然兴起:小型语言模型(SLM)正以其独特魅力崭露锋芒,对过往“规模即力量”的传统观念发起了挑战。
就在本月21日,微软与英伟达这两大科技巨头不约而同地推出了各自的小型语言模型杰作——Phi-3.5-mini-instruct与Mistral-NeMo-Minitron8B,它们以在计算效率与功能效能间达成精妙平衡为亮点,宣告了小型模型同样能够展现非凡实力,甚至在某些应用场景下,其性能足以与大型模型分庭抗礼。
人工智能领域的先锋企业Hugging Face的掌门人Clem Delangue更是直言不讳,他认为在绝大多数——高达99%的实际应用场景中,小型语言模型已足够应对,并大胆预测2024年将成为小型语言模型大放异彩的一年。这一观点得到了市场数据的部分佐证,据不完全统计,仅今年一年,包括Meta、微软、谷歌在内的行业巨头已纷纷推出共计9款小型语言模型,彰显出对这一新兴趋势的高度认可与积极布局。
1 个月前
2005年成立的美国老牌服务器厂商Database Mart正推出春季大促活动,低至5折,超40款GPU服务器套餐配备独立英伟达显卡,如NVIDIA P1000, GTX 1650, RTX 3060, A5000, A6000, H100等,满足各等级预算。支持AI渲染/推理/训练,3D渲染,直播,模拟器多开,指纹浏览器,区块链,爬虫,音视频编辑,深度学习等多种用途。 查看显卡服务器主站:GPU Mart 查看中文网: 鹄望云官网 推荐Database Mart的理由 🛠️ 核心优势解析: 【独占计算资源】专属美国IP+独享GPU:告别共享云GPU的资源争抢问题,GPU VPS与GPU独立服务器均配备独立显卡与固定IP,确保高性能计算环境零干扰,推理训练更稳定。 【开箱即用】预集成AI开发套件:内置Ollama、Stable Diffusion等工具链,一键部署机器学习/AI开发环境。 【全天候智囊支持】多场景KB支持,7×24小时中英文专家护航:GPU架构师团队随时待命,零额外成本获取专业技术支持。 【无瓶颈数据传输】全系方案标配无限流量通道,保障大规模数据吞吐。 【企业级安全防护】智能DDoS防火墙,多层分布式防御体系 🚨GPU服务器春季限时特惠: 精选机型立省50%,算力采购成本触底! 👉 立即抢购 备注试用(free trial)提交订单即可免费测试。非促销款还可享受本站特别折扣,用折扣码下单,立享永久8折优惠。 折扣码 鹄望云折扣码:TC1ONYWD GPU Mart折扣码:TC12U2ZS 选型建议: 学习/测试:选GT730/P620 中小模型:RTX 2060/T1000/A4000 VPS 企业级AI:A5000/A6000/A100 客户常见问题 Q:是否支持Windows系统? A:全系列支持Windows/Linux,可自由重装 Q:GPU服务器能否跑Llama3? A:RTX A4000可流畅运行7B/13B模型,A6000支持70B参数 Q:是否支持使用? A:提供24小时免费测试 点击查看更多爆款 ! 如需中文和支付宝付款服务,查看鹄望云官网,联系客服获取同等促销价。
2 个月前
2005年成立的美国老牌服务器厂商Database Mart正推出春季大促活动,低至5折,超40款GPU服务器套餐配备独立英伟达显卡,如NVIDIA P1000, GTX 1650, RTX 3060, A5000, A6000, H100等,满足各等级预算。支持AI渲染/推理/训练,3D渲染,直播,模拟器多开,指纹浏览器,区块链,爬虫,音视频编辑,深度学习等多种用途。 查看显卡服务器主站:GPU Mart 查看中文网: 鹄望云官网 点击查看多种爆款 ! 如需中文和支付宝付款服务,查看鹄望云官网,联系客服获取同等促销价。 Database Mart Database Mart 是一家成立于2005年的美国服务器厂商。主要提供独立的GPU显卡服务器、物理专用服务器和VPS虚拟机的租赁托管服务,也提供VPS、域名、SSL等多种托管服务。 (信息来源:美国 Database Mart 公司 )
2 个月前
📢 OpenAI即将发布GPT-4.1,多模态能力再升级! 据多家科技媒体报道,OpenAI计划于下周(2025年4月中旬)推出GPT-4.1,作为GPT-4o的升级版本,进一步强化多模态推理能力,并推出轻量级mini和nano版本。 🔍 关键升级点 更强的多模态处理 GPT-4.1将优化对文本、音频、图像的实时处理能力,提升跨模态交互的流畅度。 相比GPT-4o,新模型在复杂推理任务(如视频理解、语音合成等)上表现更优。 轻量化版本(mini & nano) GPT-4.1 mini 和 nano 将面向不同应用场景,降低计算资源需求,适合移动端或嵌入式设备。 配套新模型(o3 & o4 mini) OpenAI还将推出o3推理模型(满血版)和o4 mini,优化特定任务性能。 部分代码已在ChatGPT网页端被发现,表明发布临近。 ⏳ 发布时间与不确定性 原定下周发布,但OpenAI CEO Sam Altman 曾预警可能因算力限制调整计划。 同期,ChatGPT已升级长期记忆功能,可回顾用户历史对话,提供个性化服务(Plus/Pro用户已开放)。 🌍 行业影响 谷歌(Gemini AI)和微软(Copilot)近期也强化了AI记忆功能,竞争加剧。 GPT-4.1可能进一步巩固OpenAI在多模态AI领域的领先地位,推动商业应用(如智能客服、内容创作等)。 📌 总结:GPT-4.1的发布标志着OpenAI在多模态AI上的又一次突破,但具体性能提升和落地效果仍需观察。我们将持续关注官方更新! (综合自腾讯新闻、The Verge、搜狐等)
2 个月前
2025年3月31日,在2025年汉诺威工业博览会上,一台罗尔斯-罗伊斯(Rolls-Royce)的飞机发动机被展示在微软的展台上。这家发动机制造商利用微软的人工智能技术进行数据管理和数据分析。 人工智能(AI)是汉诺威工业展2025年的核心主题。这场全球最重要的工业博览会将于3月31日至4月4日在德国汉诺威举行,届时将展示人工智能如何为工业带来革命性变革。以下是为何这一年对工业界如此重要的原因。 人工智能成为竞争力的关键 人工智能不再是科幻电影中的概念,而是已成为工业领域的现实。2025年的汉诺威工业展将展示人工智能如何通过优化生产流程、提升效率和推动创新来增强企业的竞争力。例如,人工智能助手可以支持工厂车间的日常工作,而基于数据的预测性维护则能减少停机时间。 微软等科技巨头将在展会上展示其最新的人工智能解决方案。例如,微软推出的“工厂运营代理”(Factory Operations Agent)是一种人工智能助手,旨在优化工厂车间的流程。它能让工人通过自然语言查询分析机器数据,帮助管理者改进生产过程并快速识别和解决问题。 一项调查显示,82%的企业认为人工智能对德国工业的竞争力至关重要。然而,46%的企业担心德国工业可能会错过人工智能革命的机遇。这使得2025年的汉诺威工业展成为展示最新技术并推动其实施的关键平台。 加拿大作为伙伴国:人工智能与可持续发展的结合 2025年的伙伴国是加拿大,该国以“未来已来”(The future's here)为主题,展示其在自动化、能源、数字化转型和绿色技术领域的优势。加拿大拥有超过200家参展企业,致力于推动绿色、数字化和可持续的工业未来。人工智能在其中扮演着重要角色,例如通过优化能源使用和支持可再生能源技术实现更可持续的生产方式。 加拿大财政部长弗朗索瓦-菲利普·尚帕涅(François-Philippe Champagne)表示:“我们很高兴能继续国际合作,并在汉诺威工业展上展示超过200家代表绿色、数字化和可持续未来的加拿大企业。”这不仅加强了德加之间的经济联系,也为全球工业的未来发展指明了方向。 人工智能的具体应用 汉诺威工业展2025将展示人工智能在工业中的多种实际应用,包括: 自动化和机器人技术:人工智能驱动的自主机器人能够执行复杂任务,提高生产效率。 预测性维护:通过分析机器数据,人工智能可以预测潜在故障,从而减少意外停机。 质量控制:人工智能系统可以通过图像识别技术快速检测产品缺陷。 供应链优化:人工智能帮助企业更好地管理库存和物流,降低成本。 这些应用不仅提高了效率,还为中小企业提供了利用尖端技术的机会。展会上还将特别设立面向中小企业的展区,展示专为这一群体设计的可负担的人工智能解决方案。 人工智能的挑战与机遇 尽管人工智能潜力巨大,但其推广也面临挑战。例如,数据隐私和人工智能系统的透明度问题引起了广泛关注。欧盟即将推出的《人工智能法案》(AI Act)将为人工智能的使用设定严格标准,这可能会影响其在欧洲的推广速度。 与此同时,人工智能也带来了巨大机遇。它不仅能提升生产力,还能加速新产品和服务的开发。例如,在制药行业,人工智能可以缩短药物研发时间,从而更快地将新药推向市场。 汉诺威工业展:通往未来的桥梁 汉诺威工业展不仅是技术的展示平台,也是全球工业界交流的中心。超过4000家来自60多个国家的参展商将在展会上展示他们的创新成果。今年的展会预计将吸引超过13万名观众,与2023和2024年的参观人数相当。 对于德国工业而言,2025年可能是决定性的一年。人工智能的广泛应用可能标志着工业4.0的新阶段,即通过数字化和智能化实现更高效、更可持续的生产方式。正如微软德国公司总经理艾格尼丝·赫夫特伯格(Agnes Heftberger)所言:“人工智能已走出试验阶段,正在工业中大规模应用。” 结语 汉诺威工业展2025将是人工智能在工业中全面展示其潜力的一年。从优化生产到推动可持续发展,人工智能正在改变工业的面貌。对于企业来说,这既是挑战也是机遇——抓住这一趋势的企业将在未来占据领先地位。 (资讯:德国商报;图片:根据现场照片豆包AI再次生成)
2 个月前
人工智能是汉诺威工业展上的主导主题 微软正在推出创新助手,旨在显著简化工厂的工作流程。在近日开幕的2025汉诺威工业博览会上,微软展示了可广泛应用于工业领域的具有人工智能的创新虚拟助手。该软件公司在此次展会上展示的新产品之一是“工厂运营代理”(Factory Operations Agent)。 据该公司介绍,这是一个人工智能助手,旨在优化工厂车间的流程。例如,该解决方案使工人能够通过使用自然语言查询来分析机器的数据。 “负责任的经理”将能够优化制造流程。人工智能助手还可以比以前更轻松地识别错误来源并解决问题。 微软德国公司董事总经理阿格尼丝·赫夫伯格在汉诺威工业博览会开幕式上表示,人工智能已经走出了测试和实验阶段,正在工业领域得到广泛应用。 “我们必须毫不犹豫地引入人工智能,否则德国将在国际竞争中落后。我们必须让数据宝藏为人工智能所用。” 德国人工智能已经存在 根据德国数字协会Bitkom的一项代表性调查,42%的德国工业企业已经在生产中使用人工智能,另有三分之一(35%)有相应计划。其中包括机器的监控、机器人和车辆的控制以及能源消耗的优化:这项调查是在德国 552 家拥有 100 名或更多员工的工业制造公司中进行的。82%的公司认同人工智能的使用对于德国工业的竞争力至关重要。 然而,近一半(46%)的人认为德国工业界可能会错过人工智能革命。微软与谷歌、Meta、亚马逊并列成为全球领先的人工智能系统提供商,部分原因是微软首席执行官萨蒂亚·纳德拉早期投资数十亿美元与加州人工智能初创公司OpenAI及其开发的聊天机器人ChatGPT进行全面合作。 (资讯来源: tagesschau.de)
2 个月前
谷歌大模型与人脑语言处理机制研究由谷歌研究院与普林斯顿大学、纽约大学等合作开展。3 月上旬,谷歌的研究成果表明大模型竟意外对应人脑语言处理机制。他们将真实对话中的人脑活动与语音到文本 LLM 的内部嵌入进行比较,发现两者在线性相关关系上表现显著,如语言理解顺序(语音到词义)、生成顺序(计划、发音、听到自己声音)以及上下文预测单词等方面都有惊人的一致性 研究方法:将真实对话中的人脑活动与语音到文本LLM的内部嵌入进行比较。使用皮层电图记录参与者在开放式真实对话时语音生成和理解过程中的神经信号,同时从Whisper中提取低级声学、中级语音和上下文单词嵌入,开发编码模型将这些嵌入词线性映射到大脑活动上。 具体发现 语言理解与生成顺序:在语言理解过程中,首先是语音嵌入预测沿颞上回(STG)的语音区域的皮层活动,几百毫秒后,语言嵌入预测布罗卡区(位于额下回;IFG)的皮层活动。在语言生成过程中,顺序则相反,先由语言嵌入预测布罗卡区的皮层活动,几百毫秒后,语音嵌入预测运动皮层(MC)的神经活动,最后,在说话者发音后,语音嵌入预测STG听觉区域的神经活动。这反映了神经处理的顺序,即先在语言区计划说什么,然后在运动区决定如何发音,最后在感知语音区监测说了什么。 神经活动与嵌入的关系:对于听到或说出的每个单词,从语音到文本模型中提取语音嵌入和基于单词的语言嵌入,通过估计线性变换,可以根据这些嵌入预测每次对话中每个单词的大脑神经信号。全脑分析的定量结果显示,在语音生成和语音理解过程中,不同脑区的神经活动与语音嵌入和语言嵌入的峰值存在特定的先后顺序和对应关系。 “软层次”概念:尽管大模型在并行层中处理单词,人类大脑以串行方式处理它们,但反映了类似的统计规律。大脑中较低级别的声学处理和较高级别的语义处理部分重叠,即存在“软层次”概念。例如,像IFG这样的语言区域不仅处理单词级别的语义和句法信息,也捕捉较低级别的听觉特征;而像STG这样的低阶语音区域在优先处理声学和音素的同时,也能捕捉单词级别的信息。 以往相关研究成果 2022年发表在《自然神经科学》上的论文显示,听者大脑的语言区域会尝试在下一个单词说出之前对其进行预测,且在单词发音前对预测的信心会改变在单词发音后的惊讶程度(预测误差),证明了自回归语言模型与人脑共有的起始前预测、起始后惊讶和基于嵌入的上下文表征等基本计算原理。 发表在《自然通讯》的论文发现,大模型的嵌入空间几何图形所捕捉到的自然语言中单词之间的关系,与大脑在语言区诱导的表征(即大脑嵌入)的几何图形一致。 后续研究还发现,虽然跨层非线性变换在LLMs和人脑语言区中相似,但实现方式不同。Transformer架构可同时处理成百上千个单词,而人脑语言区似乎是按顺序、逐字、循环和时间来分析语言。 总之,该研究表明,语音到文本模型嵌入为理解自然对话过程中语言处理的神经基础提供了一个连贯的框架,尽管大模型与人脑在底层神经回路架构上存在明显不同,但在处理自然语言时有着一些相似的计算原则。
3 个月前
2025 年 3 月 12 日,清华大学 NLP 实验室联手中南大学等提出 APB 序列并行推理框架,可解决长上下文远距离语义依赖问题,在 128K 文本上比 Flash Attention 快约 10 倍。
3 个月前
在自然语言处理和人工智能领域,token通常是指文本中的基本单元,比如一个单词、一个标点符号或者一个子词等。100万token的输入输出量是一个较大的数据规模,以下从不同角度来理解这一概念: 从文本长度角度 一般来说,英文中一个单词可以看作一个token,中文可能一个字或一个词作为一个token。如果平均每个token对应5个字符(这只是一个粗略的估计,实际会因语言、文本类型等因素而不同),那么100万token大约对应500万个字符。以一本普通的中文书籍每页约1000字来算,500万个字符相当于5000页的书籍内容,这是非常庞大的文本量。 从处理难度角度 对于语言模型等人工智能系统来说,处理100万token的输入输出意味着要处理大量的信息。模型需要在这么多的token中理解语义、语法关系,捕捉上下文信息等,这对模型的容量、计算能力和算法设计都提出了很高的要求。模型需要有足够多的参数和足够深的网络结构,才能有效地处理如此大规模的文本数据,以生成准确、合理的输出。 处理如此大量的token还需要消耗大量的计算资源和时间。在训练过程中,可能需要使用高性能的GPU或TPU集群,花费数天甚至数周的时间才能完成训练。在推理阶段,也需要较多的计算资源来快速处理输入并生成输出,以满足实时性或高效性的要求。 从应用场景角度 机器翻译:如果用于机器翻译任务,100万token可能包含了各种领域的大量句子和段落。这意味着模型可以学习到丰富的语言表达方式和翻译模式,能够处理更复杂、更专业的翻译任务,提高翻译的准确性和质量。 文本生成:在文本生成任务中,如创作小说、新闻报道等,100万token的输入可以让模型学习到大量的文本风格、主题和结构信息,从而生成更丰富多样、更具创意和逻辑性的文本内容。 智能客服:对于智能客服系统,100万token的输入输出量可以使系统处理大量的用户咨询和问题,学习到各种常见问题的回答模式和解决方案,从而更准确、更快速地为用户提供服务,提高用户满意度。
Minimax(海螺AI)已由大模型名Minimax替换原海螺AI。现海螺AI为Minimax视频生成产品名。
海螺AI