
QoderWork是阿里推出的本地优先桌面级AI Agent,核心是让非技术用户用自然语言调度本地应用与文件完成复杂办公任务,以“零门槛+本地化隐私+Skill生态”为核心优势,主打数据本地执行、操作透明可控,适合职场办公、内容创作、数据处理等场景。以下从核心定位、功能、技术、使用与优劣势展开介绍。
QoderWork定位为“人人可用的桌面智能助手”,基于阿里Qoder的Agent能力,将AI从聊天框延伸到本地桌面操作,解决传统云端Agent的数据隐私与本地操作受限问题,强调“自主规划、本地执行、可控透明”,让用户以自然语言驱动文件管理、数据处理、内容创作等多应用协同任务,无需编程基础。
| 功能模块 | 核心能力 | 说明 |
|---|---|---|
| 本地全链路执行 | 本地操作+隐私保护 | 任务在终端执行,直接调用Excel、PPT、浏览器等本地应用,无需上传文件,敏感数据不落地云端;关键操作需用户授权确认,避免误操作。 |
| 自然语言任务拆解 | 复杂任务分步执行 | 理解高阶意图并拆解为可执行步骤,如“分析Excel销售表→生成图表→写报告”,实时反馈进度,模糊点主动确认,保持人对流程的控制。 |
| Skill自定义与复用 | 内置+自定义Skill | 1. 内置文件整理、数据可视化、内容创作等常用Skill; 2. 自然语言创建/上传自定义Skill,封装个人工作流,支持MCP协议对接企业系统; 3. 2026年2月将上线团队共享Skill功能。 |
| 多类型内容与数据处理 | 跨格式/模态处理 | 支持Excel数据分析、PDF/Word批量处理、音频转文字/脚本、多格式文件分类归档,一键生成图表、报告、演示文稿等交付物。 |
| 开放生态对接 | MCP协议集成 | 内置主流MCP工具,可连接本地数据库、Notion、Python脚本等,适配企业内部ERP、CRM等系统,扩展协作边界。 |
| 优点 | 缺点 |
|---|---|
| 1. 本地化执行,敏感数据隐私有保障; 2. 零门槛自然语言操作,无需编程; 3. 操作透明可控,关键步骤需授权,避免误操作; 4. Skill生态开放,支持自定义与团队共享(即将上线); 5. 国产适配,国内访问稳定,无海外工具的地域/订阅限制。 |
1. 目前处于内测阶段,功能与兼容性可能迭代; 2. 依赖本地应用安装,部分小众软件适配可能有限; 3. 复杂任务的步骤拆解与执行效率仍需优化; 4. 自定义Skill的高级能力可能需基础技术认知。 |
| 对比项 | QoderWork | Claude Cowork | Automator(macOS) |
|---|---|---|---|
| 执行方式 | 本地优先 | 云端执行 | 本地执行 |
| 隐私保护 | 数据不落地云端 | 需上传文件 | 本地隐私可控 |
| 上手难度 | 低(自然语言+Skill) | 中(需英文/订阅) | 中(需熟悉规则) |
| 生态扩展 | 支持MCP+自定义Skill | 有限 | 依赖系统操作 |
| 地域适配 | 国内友好 | 地域/订阅受限 | 仅限macOS |

2 天前
作者: Augusto Marietti(Kong CEO & 联合创始人)、YJ Lu(Teachers’ Venture Growth 总监)、Yiran Wu(Teachers’ Venture Growth 投资分析师) 背景:上下文是新的算力 过去几年,AI 以史无前例的速度发展。从传统机器学习系统跃迁到能写作、编程、推理的生成式 AI 模型,这一变化彻底改变了我们与 AI 的互动方式。但旅程并未结束。 我们正进入一个新的阶段:具备上下文理解与自主行动能力的 Agentic AI(代理式 AI)。它们能自主设定目标、执行任务,并且几乎不需要人工干预。 支撑这一转变的核心是 Model Context Protocol(MCP)模型上下文协议 —— 一个新兴标准,用于将基于提示的生成式 AI 模型连接到真实世界的数据、工具与操作。 上一阶段的问题:缺失的上下文(404) 直到最近,大多数前沿大模型都运行在“围墙花园”中: 它们能理解用户提示并生成文本,但无法标准化地访问个人或企业数据、内部工具、API 或其他关键上下文来源。 企业若想让模型具备上下文能力,只能构建昂贵、脆弱且难以维护的定制集成(“胶水代码”)。 2024 年 11 月,Anthropic 推出开源框架 MCP,旨在通过通用协议将上下文引入 LLM,使其能发现、调用并认证外部系统的 API。 MCP 很快成为行业标准,被 OpenAI、Google 等巨头采用。 随着生态成熟,AI 系统将能在不同工具之间保持上下文,实现可持续的架构。 MCP 如何工作? 在 MCP 之前,每个 LLM 都有自己的插件格式,需要为每个工具写独立的集成代码,形成 N × M 的复杂矩阵。 MCP 将这一矩阵折叠为一个供应商中立的系统,通过定义清晰的角色(host、client、server),让工具能以一致方式被发现与调用。 只需为每个上下文源构建一个 MCP server,任何兼容 MCP 的 AI 助手都能像使用工具箱一样使用它。 流程如下: 用户输入提示 模型解析意图 模型不再“猜测”,而是向 真实上下文 请求信息 MCP client 将意图转为标准化请求 MCP server 执行 API 调用并返回结构化结果 模型基于真实数据生成上下文感知的输出 最重要的是:不再需要 N × M 的胶水代码。 承API之踵,拓更阔之路 科技行业并非第一次需要通用标准来实现规模化。 API 曾是软件互联的关键: 它定义了软件之间如何交流、返回什么、如何安全交换信息。 API 真正爆发是在 REST、JSON、OAuth 等标准化之后,开发者终于能以可移植、可预测的方式构建软件。 这催生了 Stripe、Twilio、Plaid 等“API 即业务”的公司。 MCP 正在走类似的道路: 标准化模型访问工具与数据的方式。 随着 MCP 采用率提升,我们将看到 API 生态曾经出现的配套设施: 注册表、可观测性、审批系统、策略引擎、更好的工具链等。 我们的判断:上下文 + API + 工作流 = Agentic AI 我们押注两个方向: Anthropic 的 MCP 正成为连接 LLM 与工具/数据的行业标准,为代理式工作流与多代理系统(A2A)奠定基础。 Kong 将其在 API 管理领域的领先地位扩展到 AI 连接层,成为企业系统与新一代 AI 代理之间的“连接组织”。 Anthropic Anthropic 推出 MCP,是因为 AI 的未来不仅在于更大的模型,还在于将模型连接到正确的上下文。 2025 年 5 月,Anthropic 发布 Integrations,将 MCP 支持扩展到 Claude API,使 Claude 能无代码连接任何远程 MCP server。 未来路线图从单一代理转向多代理协作(A2A): 一个代理获取客户数据 一个代理做投资组合分析 一个代理生成合规报告 全部通过 MCP 与 A2A 无缝协调 AI 将从单一助手变成专业代理网络。 Kong Kong 正将其 API 管理平台扩展到 AI 连接层,推出: AI Gateway:将 LLM/MCP/API 调用视为 API 流量进行路由、安全、监控与优化 MCP Server for Konnect:将企业系统(API、服务、分析等)通过 MCP 暴露给 AI 代理,使其能用自然语言查询并获取洞察 Kong 的愿景是: “没有 API,就没有 AI。” MCP 的下一章:Linux 基金会托管 2025 年 12 月,Anthropic 将 MCP 捐赠给 Linux 基金会旗下的新机构 Agentic AI Foundation(AAIF)。 AAIF 由 Anthropic、Block、OpenAI 共同创立,并获得 Google、Microsoft、AWS、Cloudflare、Bloomberg 支持。 MCP 的开源治理模式类似 Linux、Kubernetes、Node.js、PyTorch 等项目,预计将加速其采用。 目前 MCP 已实现: 每月 9700 万+ SDK 下载 1 万+ 活跃服务器 深度集成到 Claude、ChatGPT、Gemini 等产品 MCP 正从开发者框架走向下一代 AI 工作流的关键基础设施。 未来的机会 MCP 通过提供一个中立、通用的语言,让模型能访问工具、数据与系统,从而降低摩擦、提升互操作性。 随着采用率提升,我们将看到类似 API 生态的爆发: 新商业模式 新工具链 新应用类别 但机会伴随风险: 工具滥用 数据暴露 安全治理需求 生态必须在开放与安全之间取得平衡。 标准本身不会改变世界,生态系统才会。 如果成功,MCP 将成为未来几十年 AI 智能如何被封装、共享与扩展的基础设施。 (文章来源otpp.com )

2 天前
Agent是具备自主决策、工具调用与状态感知的智能体概念,LangGraph则是LangChain生态下的图驱动有状态Agent编排框架,专门解决复杂Agent的状态管理、循环分支与持久执行问题,是构建生产级Agent的核心基础设施。二者是“概念-实现”的强绑定关系,LangGraph为Agent提供图建模、状态持久化、人机协作等关键能力,适配ReAct、多智能体协作等复杂场景。 核心关联逻辑:概念与实现的分层 层级 定位 核心内容 概念层(Agent) 自主决策执行单元 LLM+Tools+自主循环(Thought→Action→Observation),解决非预定义复杂任务 实现层(LangGraph) 图驱动Agent框架 以有向图建模Agent流程,通过State/Nodes/Edges/Checkpointing支撑复杂逻辑 生态层 LangChain全家桶 LangGraph无缝集成LangChain的LLM/Tools/Prompt与LangSmith调试能力,降低开发门槛 LangGraph为Agent解决的核心痛点 有状态执行:用State统一管理对话历史、工具输出、中间结果,支持跨轮次上下文与长期记忆,避免“失忆”。 复杂流程编排:将Agent步骤拆为Nodes(LLM调用、工具执行、决策判断),用Edges(含条件分支)定义路径,原生支持循环(如ReAct迭代)与并行执行。 持久化与容错:Checkpointing自动保存每步状态,任务中断后可恢复,适配长时间运行场景(如多轮调研、项目管理)。 人机协作可控:支持执行中人工干预状态、审批工具调用,解决Agent“黑盒操作”风险。 多Agent协同:将不同功能Agent作为节点,通过图结构实现任务拆分与结果聚合,适配复杂团队协作流程。 典型实现范式:ReAct Agent的图建模 定义State:封装消息、工具结果、思考记录等,用TypedDict/Pydantic统一管理。 配置Nodes:LLM节点(推理决策)、工具节点(执行调用)、路由节点(判断是否继续)。 连接Edges:按条件分支(如“有工具调用则执行工具,否则结束”)构建循环路径。 启用Checkpointing:保存每步状态,支持断点恢复与调试追踪。 部署与监控:用LangSmith可视化执行路径,快速定位逻辑问题。 与传统Agent实现的差异 对比项 LangGraph驱动Agent LangChain基础Pipe 普通云端Agent 状态管理 原生持久化,跨轮次记忆 无内置状态,需手动维护 依赖会话缓存,易丢失 复杂逻辑 支持循环、条件分支、并行 线性流程,扩展有限 多为单步/固定链,灵活度低 容错能力 Checkpointing断点恢复 无容错,中断需重跑 云端依赖,故障难恢复 可控性 执行中人工干预 固定流程,干预困难 操作透明性差 关键使用场景 单Agent复杂任务:市场调研(搜索→数据清洗→报告生成)、财务对账(多系统数据拉取→交叉校验→异常告警)。 多Agent协作:产品开发(需求Agent→设计Agent→开发Agent→测试Agent)、跨境电商(选品→翻译→投放→售后)。 长期运行任务:客户成功跟进(多轮问题诊断→方案生成→效果复盘)、内容系列创作(选题→素材→撰写→发布)。 快速上手建议 用create_react_agent快速搭建基础Agent,绑定LLM与Tools,验证核心流程。 自定义State结构,覆盖任务类型、工具结果、历史对话等关键字段。 拆分Nodes与Edges,添加条件判断(如“金额>1000需审批”),提升流程可控性。 启用Checkpointing并接入LangSmith,监控执行路径与状态变化。

4 天前
命令优先,而非图形界面。

7 天前
原名 Clawdbot 的灵感来自 Claude 模型加载时出现的那个“Clawd”小龙虾/爪子吉祥物。

7 天前
奥地利最知名的独立开发者 Steinberger 是全球最热的“一人公司”/“vibe-coding”代表人物之一。

10 个月前
根据《Nature》最新发表的研究,非营利研究机构METR发现了一项被称为“智能体摩尔定律”的规律,即AI智能体(Agent)在完成长期任务方面的能力每7个月翻一番。这一发现揭示了AI在任务完成时间跨度上的指数级增长趋势,并提出了“50%-任务完成时间跨度”这一新指标来衡量AI的能力变化。 核心发现 能力翻倍周期:自2019年以来,AI智能体完成任务的时间跨度每7个月翻一番。这意味着,如果2019年AI完成某项任务所需时间对应人类需要10分钟,那么7个月后,这一时间将缩短至20分钟。 加速趋势:2024年,AI能力的增长速度进一步加快,部分最新模型的能力每3个月翻一番。 未来预测:按照这一趋势,预计5年后(即2030年左右),AI将能够完成许多当前需要人类花费一个月时间才能完成的任务。 研究方法 METR团队通过以下步骤验证了这一规律: 任务设计:设计了170个多样化任务,涵盖软件工程、机器学习、网络安全等领域,并测量人类专家完成这些任务所需的时间,建立“人类基准线”。 指标引入:提出了“50%-任务完成时间跨度”指标,即AI在50%成功率下完成任务的时间长度。这一指标对数据分布的微小变化具有鲁棒性。 模型评估:评估了2019年至2025年间发布的13个前沿AI模型(如GPT系列、Sonnet 3.7等),通过逻辑回归分析计算每个模型的时间跨度。 验证与外部实验 为了验证结果的可靠性,研究团队进行了多项外部实验,包括: 回溯预测:使用2023-2025年数据验证趋势一致性。 任务混乱度分析:评估任务复杂性对AI性能的影响,发现AI在复杂任务上的提升速度与简单任务相似。 基准测试:在SWE-bench等数据集上验证了类似的指数增长趋势。 意义与影响 技术进步:这一发现标志着AI在执行长期任务能力上的显著进步,可能推动AI在软件开发、研究等领域的广泛应用。 劳动力市场影响:AI能力的快速提升可能对劳动力市场产生深远影响,未来或替代部分人类工作,尤其是重复性和耗时任务。 社会挑战:研究提醒社会各界需关注AI技术进步带来的就业和经济挑战,并提前制定应对策略。 未来展望 METR团队预测,按照当前趋势,AI可能在2028年11月达到一个月的任务时间跨度,保守估计则在2031年2月实现。尽管研究存在任务局限性和未来不确定性,但团队确信AI能力每年有1~4倍的增长趋势。 这项研究为AI技术的发展提供了新的量化标准,同时也引发了对AI未来应用和影响的深入思考。

10 个月前
阿里推出新夸克,集成AI对话、深度搜索、深度执行等功能,标志着其从搜索引擎向AI Agent的转型。 新夸克接入通义系列模型,用户规模超2亿,DAU达3430万,位居AI应用榜首。

10 个月前
2025 年 3 月 12 日消息,OpenAI 发布 Agent 工具包,推出一组新的 API 和工具以简化 Agent 应用程序开发,包括新的 Responses API、网络搜索、文件搜索、计算机使用工具和 Agents SDK 等,还计划在接下来的几周和几个月内发布其他工具和功能。
Minimax(海螺AI)已由大模型名Minimax替换原海螺AI。现海螺AI为Minimax视频生成产品名。
海螺AI