这项研究由科布伦茨应用科学大学和波恩大学医院的医学研究人员团队完成,他们开发了一种名为 OptAB 的 AI 模型,用于个体化和优化地选择治疗败血症的抗生素。该模型完全基于 AI 数据驱动,并特别注重在考虑副作用的情况下,为败血症患者选择最合适的抗生素。其目标是最大化治疗成功率,同时显著降低治疗过程中的副作用。
此外,这一研究得到了莱法州卫生部门的资助,并被认为是首个能够为败血症患者提供个性化抗生素优化选择的在线模型。由于败血症治疗开始时病原体通常未知,医生常常依赖广谱抗生素,而 OptAB 模型可以通过分析患者的临床数据、病原体信息及药物敏感性,帮助医生快速制定更精准的治疗方案。相关成果已发表在医学期刊《npj·digital medicine》上。
据开发人员称,该 AI 模型是使用历史败血症病例的数据创建的,是世界上第一个此类 AI 模型。找到正确的药物组合来治疗败血症可以大大增加康复的机会,并消除对可能导致严重副作用的广谱药物治疗的需求。
(资讯来源:德国联邦外贸与投资署)
1 个月前
人工智能是汉诺威工业展上的主导主题 微软正在推出创新助手,旨在显著简化工厂的工作流程。在近日开幕的2025汉诺威工业博览会上,微软展示了可广泛应用于工业领域的具有人工智能的创新虚拟助手。该软件公司在此次展会上展示的新产品之一是“工厂运营代理”(Factory Operations Agent)。 据该公司介绍,这是一个人工智能助手,旨在优化工厂车间的流程。例如,该解决方案使工人能够通过使用自然语言查询来分析机器的数据。 “负责任的经理”将能够优化制造流程。人工智能助手还可以比以前更轻松地识别错误来源并解决问题。 微软德国公司董事总经理阿格尼丝·赫夫伯格在汉诺威工业博览会开幕式上表示,人工智能已经走出了测试和实验阶段,正在工业领域得到广泛应用。 “我们必须毫不犹豫地引入人工智能,否则德国将在国际竞争中落后。我们必须让数据宝藏为人工智能所用。” 德国人工智能已经存在 根据德国数字协会Bitkom的一项代表性调查,42%的德国工业企业已经在生产中使用人工智能,另有三分之一(35%)有相应计划。其中包括机器的监控、机器人和车辆的控制以及能源消耗的优化:这项调查是在德国 552 家拥有 100 名或更多员工的工业制造公司中进行的。82%的公司认同人工智能的使用对于德国工业的竞争力至关重要。 然而,近一半(46%)的人认为德国工业界可能会错过人工智能革命。微软与谷歌、Meta、亚马逊并列成为全球领先的人工智能系统提供商,部分原因是微软首席执行官萨蒂亚·纳德拉早期投资数十亿美元与加州人工智能初创公司OpenAI及其开发的聊天机器人ChatGPT进行全面合作。 (资讯来源: tagesschau.de, 图片来源: heise.de)
1 个月前
这项研究由科布伦茨应用科学大学和波恩大学医院的医学研究人员团队完成,他们开发了一种名为 OptAB 的 AI 模型,用于个体化和优化地选择治疗败血症的抗生素。该模型完全基于 AI 数据驱动,并特别注重在考虑副作用的情况下,为败血症患者选择最合适的抗生素。其目标是最大化治疗成功率,同时显著降低治疗过程中的副作用。 此外,这一研究得到了莱法州卫生部门的资助,并被认为是首个能够为败血症患者提供个性化抗生素优化选择的在线模型。由于败血症治疗开始时病原体通常未知,医生常常依赖广谱抗生素,而 OptAB 模型可以通过分析患者的临床数据、病原体信息及药物敏感性,帮助医生快速制定更精准的治疗方案。相关成果已发表在医学期刊《npj·digital medicine》上。 据开发人员称,该 AI 模型是使用历史败血症病例的数据创建的,是世界上第一个此类 AI 模型。找到正确的药物组合来治疗败血症可以大大增加康复的机会,并消除对可能导致严重副作用的广谱药物治疗的需求。 (资讯来源:德国联邦外贸与投资署)
1 个月前
delphi GmbH 是一家成立于 2001 年的德国创新型企业,总部位于德国,专注于健康促进和预防领域。自创立以来,公司从最初的药物滥用预防和咨询服务起步,逐步发展为一家将科学研究、数字化技术与实践应用相结合的行业先锋。近年来,delphi GmbH 在人工智能(AI)领域的投入尤为突出,其标志性项目之一——SuchtGPT,充分展示了公司在健康服务中应用AI的雄心与能力。 公司概况与核心业务 delphi GmbH 的使命是通过科学方法和创新手段提升人们的健康与福祉。公司业务涵盖在线咨询与干预项目、项目评估与研究、健康信息传播以及创新项目开发。其团队由心理学、公共健康、社会工作等领域的专家组成,强调将理论知识转化为实际解决方案。服务的客户包括公共机构和私营企业,业务范围覆盖德国及相关合作网络。 delphi 的核心价值体现在四个方面:科学性(以实证研究为基础)、实用性(贴近实际需求)、数字化(利用现代技术接触广泛人群)以及合作性(与客户共同制定策略)。这些理念不仅贯穿其传统健康服务,也为其AI相关业务奠定了基础。 AI业务:SuchtGPT 项目 在人工智能领域,delphi GmbH 的代表性项目是 SuchtGPT(“Gestaltung, Programmierung und Testung eines KI-basierten Chatbots für Suchtfragen” 的缩写,意为“设计、编程和测试用于毒瘾问题的AI聊天机器人”)。该项目由德国联邦卫生部(Bundesministerium für Gesundheit, BMG)资助,旨在开发一个基于AI的聊天机器人,为用户提供毒瘾相关问题的低门槛、匿名支持。 SuchtGPT 的目标是通过一个符合欧盟数据保护标准(DSGVO-konform)的数字化工具,帮助用户获取信息或引导他们进入专业戒毒体系。项目利用大型语言模型(Large Language Model, LLM),结合毒瘾领域的专业知识和沟通技巧,使聊天机器人能够独立、准确地回答用户提问。开发过程采用参与式方法,广泛吸纳毒瘾救助领域的利益相关者(如专业协会、戒毒机构和政策制定者)的意见,确保工具的实用性。 项目实施分为多个阶段:前期技术框架搭建与背景研究、原型开发与测试、以及基于数据分析的持续优化。截至 2025 年 3 月,SuchtGPT 仍处于开发阶段。2025 年 1 月 15 日,项目团队举办了一场数字化信息活动,向超过 250 名参与者展示了项目规划和生成式AI的应用成果。更多进展可通过其官网跟踪。 AI与健康服务的融合 SuchtGPT 项目不仅体现了 delphi 在AI技术上的投入,也延续了其在数字化健康服务领域的专长。公司通过在线咨询平台、健康教育工具等积累了丰富的经验,而 AI 的引入进一步扩展了服务的广度和深度。例如,SuchtGPT 的聊天机器人旨在以更高效、智能的方式触达需要帮助的人群,同时保持服务的科学性和可靠性。这种将AI与健康促进相结合的模式,凸显了 delphi 在行业中的前瞻性。 团队与合作伙伴 delphi 的 AI 项目由一支跨学科团队推动,成员包括心理学专家、技术开发人员和数据分析师。在 SuchtGPT 项目中,公司与 nexus Institut 等合作伙伴协作,负责参与流程的执行,同时依托 IT 与 AI 专家确保技术实现的高标准。这种合作模式也反映了 delphi 一贯强调的“协作性”理念。 总结 delphi GmbH 是一家在健康促进领域深耕多年的德国企业,以科学性与实用性著称。近年来,公司通过 SuchtGPT 等项目,积极探索人工智能在健康服务中的应用,致力于为毒瘾等问题提供创新、数字化的解决方案。凭借其专业团队和与时俱进的技术战略,delphi 在德国乃至全球的健康科技领域占据了重要地位。 这家企业不仅是健康促进的践行者,更是 AI 技术在公共福祉领域应用的先锋。未来,随着项目的推进,delphi 的影响力有望进一步扩大。 (信息来源:dephi官网)
1 个月前
德国Comarch ERP Enterprise 是一款全面的企业资源规划 (ERP) 系统,专为寻求在流程方面提高 ERP 系统用户技术进步水平的企业而设计。它是一款现代化的 ERP 系统,具有高度的灵活性和可扩展性,能够满足各种规模和行业的企业的需求。 Comarch企业软件公司最近撰文:“ChatERP: Quantensprung im Enterprise-Resource-Planning”,即ChatERP在企业资源规划中的巨大进步。这份白皮书提到ERP系统是企业的核心,整合了关键业务流程和数据。过去,AI在ERP中的应用成本高且复杂,主要适用于大企业。但生成式AI和大型语言模型(如ChatGPT)的出现改变了这一状况,使得中小企业也能利用AI提升竞争力。这里的关键点是生成式AI降低了使用门槛,使得ERP中的AI助手变得可行。 1. 引言与背景 ERP系统的重要性:作为企业核心,整合关键业务流程(生产、采购、销售等)及数据(客户、订单、库存等)。AI在ERP中的演变:传统AI(如机器学习)成本高、数据需求大,仅适用于大企业;生成式AI(如ChatGPT)通过大型语言模型(LLM)降低门槛,使中小企业也能利用AI提升竞争力。ChatERP的定位:Comarch ERP Enterprise(6.4+版本)内置的多语言AI助手,通过自然语言交互革新ERP使用方式。 2. 改善可用性与降低使用障碍 自然语言交互:用户可通过对话形式与ERP系统互动,支持多语言,会话上下文感知。 动态帮助系统:基于RAG(检索增强生成)技术,AI助手深度理解ERP系统细节,无需额外训练。替代静态文档,提供实时、步骤化指导(如创建新文章、导航功能)。 降低学习成本:新用户快速上手,缩短培训时间;有经验用户更快掌握新功能。减少对IT支持的依赖,释放IT团队资源用于创新任务。 3. 通过语音/文本命令高效控制应用 多模态交互:支持传统UI操作与语音/文本指令结合,提升效率。应用场景: 快速导航:直接跳转深层功能(如“打开分类为家居用品的文章”)。数据操作:创建/打开记录(如“为Mustermann公司新建订单”并预填数据)。自动化任务:处理重复性工作(数据清理),但关键操作需人工审核。 类似消费级助手(如Siri):但针对企业复杂场景优化,通过API集成ERP功能。 4. 通过聊天探索ERP数据价值 数据查询与分析: 自然语言生成报告(如“显示上季度各地区销售额”),自动生成图表或摘要。预测与洞察:销售趋势预测、库存优化建议。 降低数据分析门槛:非技术用户无需复杂技能即可获取业务洞察,支持数据驱动决策。 5. 安全与合规 权限管理:通过架构设计确保数据访问合规性(如Berechtigungen权限控制)。数据隐私:企业数据仅用于内部处理,符合GDPR等法规。 6. 实施建议与结论 采用策略: 选择兼容现有系统的AI助手(如ChatERP),分阶段部署,从小任务开始。培训员工适应新交互方式,结合传统与AI操作以最大化效率。 未来潜力: 持续优化AI模型,扩展应用场景(如供应链优化、客户行为分析)。推动ERP从“记录系统”向“智能决策支持系统”转型。 核心价值总结: ChatERP通过自然语言交互、动态帮助、语音控制及智能数据分析,显著提升ERP系统的易用性、效率和决策支持能力,尤其助力中小企业以更低成本实现数字化转型。
2 个月前
DELFI(DNA Evaluation of Fragments for Early Interception,DNA片段早期拦截评估)是由约翰霍普金斯大学(Johns Hopkins University)的西德尼·基梅尔癌症中心(Sidney Kimmel Cancer Center)的研究人员开发的一种基于人工智能的血液检测技术。它旨在通过分析血液中的游离DNA(cell-free DNA, cfDNA)片段模式,检测癌症的早期信号。这一技术最初由Victor E. Velculescu(肿瘤学教授兼癌症遗传学和表观遗传学项目联合主任)和Robert B. Scharpf(肿瘤学副教授)等人提出,并在2019年发表在《自然》(Nature)杂志上。 DELFI的工作原理 DELFI利用了癌细胞和健康细胞在DNA片段化(fragmentation)模式上的差异。当细胞死亡时,会释放DNA片段到血液中,而癌细胞释放的cfDNA在大小、分布和基因组区域的特征上与正常细胞有所不同。DELFI通过以下步骤实现癌症检测: 血液样本分析:从血浆中提取cfDNA。 片段模式识别:使用低覆盖率测序技术分析数百万个DNA片段,观察其异常模式(如片段大小和数量)。 AI算法处理:通过机器学习模型识别与癌症相关的特定片段化特征,生成“DELFI分数”,用于判断癌症是否存在以及可能的来源。 这种方法成本效益高,因为它不需要高深度测序,仅需低覆盖率测序即可实现筛查目的。 DELFI的应用 DELFI最初被开发用于肺癌检测。在2021年的一项研究中,它在796名来自丹麦、荷兰和美国的受试者中检测出超过90%的肺癌病例,结合临床风险因素和影像学检查后,敏感性高达94%。随后,研究扩展到其他癌症类型: 肝癌:2022年,DELFI在一项涉及724人的研究中检测出超过80%的肝细胞癌(HCC),即使在早期阶段也能发现异常。 多癌种检测:DELFI已被探索用于检测多种癌症,包括肺癌、肝癌等,并显示出跨种族和风险人群的普适性。 DELFI的优势 早期检测:能在癌症早期发现信号,提高治疗成功率。 非侵入性:只需抽血,无需活检或侵入性检查。 高灵敏度和特异性:例如肝癌检测中敏感性88%、特异性98%。 可扩展性:技术成本较低,适合大规模筛查,尤其在高风险人群中。 发展与商业化 2019年,Velculescu等人创立了DELFI Diagnostics公司,将这项技术推向商业化。迄今为止,公司已获得数轮融资,包括2021年的1亿美元A轮融资和2022年的2.25亿美元B轮融资。2023年,DELFI Diagnostics推出了首款商业化产品“FirstLook Lung”,用于肺癌筛查。 局限性与未来 尽管DELFI前景广阔,但仍需更大规模的临床试验来验证其在真实世界中的表现。此外,如何将结果与现有诊断流程(如影像学)无缝整合,以及提高对罕见癌症类型的检测能力,是未来的研究方向。 DELFI代表了AI在癌症早期检测领域的重大突破,体现了约翰霍普金斯大学在医学AI研究中的领先地位。
2 个月前
CheXNet 是由斯坦福大学研究团队开发的一种深度学习模型,专门用于从胸部 X 光片中检测和诊断疾病。它基于卷积神经网络(CNN),最初是在 2017 年由 Pranav Rajpurkar、Jeremy Irvin 等研究人员在论文《CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning》中提出的。 CheXNet 的背景与目标 医学影像分析一直是人工智能在医疗领域的重要应用方向。胸部 X 光片是诊断多种胸部疾病(如肺炎、肺结节、心脏扩大等)的常见工具,但传统的诊断依赖放射科医生的人工判读,效率和准确性可能因医生的经验而异。CheXNet 旨在通过自动化分析达到甚至超过人类放射科医生的诊断水平,尤其是针对肺炎的检测。 技术原理 CheXNet 是基于 DenseNet-121(一种深度卷积神经网络架构)进行改进的模型。研究团队利用了 NIH(美国国立卫生研究院)发布的 ChestX-ray14 数据集,该数据集包含超过 10 万张胸部 X 光图像,标注了 14 种常见胸部疾病。CheXNet 在这个数据集上进行训练,能够同时预测这些疾病的存在与否。 具体来说: 输入:单张胸部 X 光图像。 输出:14 种疾病的概率分布(例如肺炎、肺气肿、胸腔积液等)。 创新点:通过微调 DenseNet-121 的最后一层,CheXNet 不仅能检测单一疾病,还能处理多标签分类任务(即一张图像可能同时存在多种疾病)。 在测试中,CheXNet 的表现尤其在肺炎检测上达到了放射科医生的水平,其 ROC 曲线下面积(AUC)超过了 0.76,显示出较高的敏感性和特异性。 应用与影响 CheXNet 的开发展示了 AI 在医学影像诊断中的潜力,尤其是在资源匮乏地区,自动化的工具可以辅助医生快速筛选和诊断。它也推动了后续研究,比如结合注意力机制、可解释性分析(如热力图,显示模型关注图像的哪些区域)以及与其他数据集的迁移学习。 局限性 尽管 CheXNet 表现优异,但它仍有局限性: 数据依赖性:模型的效果依赖于训练数据的质量和多样性,可能在不同人群或设备生成的 X 光片上表现不一致。 可解释性:作为深度学习模型,它的决策过程对人类来说仍是“黑箱”,需要进一步改进以获得医生的信任。 临床验证:虽然在研究中表现良好,但在真实临床环境中的广泛应用还需要更多验证。 后续发展 CheXNet 开辟了医学影像 AI 研究的新方向。斯坦福团队和其他研究者在此基础上开发了更先进的模型(如 CheXNeXt),并探索了与自然语言处理结合的系统,用于生成放射学报告。xAI 等公司也在类似领域推进研究,试图将 AI 更深入地融入医疗实践。
2 个月前
2025年2月18日,“2025医疗人工智能与精准诊疗发展论坛”在瑞金医院召开。此次盛会汇聚了众多行业专家、学者及华为代表,共同见证瑞智病理大模型RuiPath的发布。 近年来,AI技术在全球范围内蓬勃发展,为各行业带来了深刻变革,医疗领域也不例外。为有效提升病理切片检查的效率和诊断准确率,瑞金医院携手华为公司推进数字化智慧病理科建设并获得成果。此次活动线上、线下同步播出,由瑞金医院-上海市数字医学创新中心朱立峰主持。 致辞嘉宾: 宁光 中国工程院院士/瑞金医院院长 上海市医院协会副会长 看着台下爆满的会场,我深切感受到:这场技术浪潮已然到来。我也曾学习安装豆包、摸索Kimi、尝试DeepSeek——这些过程让我逐步思考:当AI重构社会的速度远超想象时,医院正面临更多机遇和挑战。 我们像活在玻璃瓶里的人,瓶外的铁锤随时可能落下。三年前讨论的“未来技术”,如今已成为基础工具。瑞金医院选择主动打碎瓶子,找到临床应用中的“刚需”,助力病理科图像分析,今天我们将一起见证瑞智病理大模型RuiPath的发布。除此以外,我们还将感受更震撼的多模态融合。 可以想见,如果华为的ICT基础设施、联通的传输能力这些技术若注入医疗场景,那将是怎样的盛宴。但比技术更重要的,是守住生命至上的底线——我们只用经得起验证的技术。在此向全国同仁发出邀请:瑞金医院愿意做医疗AI的“创新实验室”。我们深知机器必然替代部分人力,但人文关怀永远不可替代,让我们共同构建“技术-人文”双螺旋,为你的梦想插上一双“理性的翅膀”。 冯骏 上海市卫生健康委员会(信息化管理处)副主任 当前AI技术推动医疗向智能化、精准化迈进,国家积极推进卫生健康行业“人工智能+”应用创新发展,上海致力于打造医学人工智能高地,已发布相关方案,将推进医疗健康数据新型基础设施建设等工作。本次论坛聚焦病理诊断中AI应用创新,该技术有望缓解病理医生资源短缺,提升检查效率和诊断准确率。此次瑞金医院与华为合作,发布的大模型是重要一步,期待此次大会医生、专家共同探讨未来方向,为健康中国建设贡献力量。 王育 上海申康医院发展中心副主任 国家妇产疾病临床医学研究中心上海分中心负责人 近年来,AI技术在全球蓬勃发展,在医疗领域带来变革,国家重视并出台文件推进医疗AI创新应用。上海作为前沿阵地积极响应,申康医院发展中心推动市级医院医学AI部署应用。病理AI发展有着重要意义,期待此次论坛为医疗AI发展注入动力,助力公立医院高质量发展。同时,也希望通过此次论坛能够进一步加强产学研用的深度融合,促进人工智能技术在医疗领域的转化与落地。 胡建平 国家卫生健康委统计信息中心原副主任 中国卫生信息与健康医疗大数据学会副会长 当前健康中国与数字中国战略深度融合,我们正推动经验医学向精准医学的历史性跨越。在此进程中,病理诊断作为临床金标准,其革新意义尤为重大。AI不仅提升病理诊断效率和准确性,更能将专家经验转化为普惠资源。瑞金医院与华为的合作具有示范价值——通过百万级病理数据与先进数据存力的融合,实现了从数字化病理到智能化诊疗的突破。 瑞智病理大模型RuiPath发布 王朝夫 上海交通大学医学院病理学系主任 瑞金医院病理科主任 自2021年底启动以来,瑞金医院病理科在院领导支持下,与合作伙伴紧密协作,实现了从信息化到数字化再到智能化的跨越。2023年3月,端到端数字化智慧病理系统上线,标志着我们迈入新时代。我们坚持“以场景驱动技术,以技术赋能场景”的理念,汇聚多方力量,攻克难题。今天,瑞智病理大模型RuiPath的发布,标志着瑞金病理科在智能化领域迈出了更加坚实的一步,也为我国病理诊断的均质化、高效化发展注入了新的潜能。 笪倩 瑞金医院病理科主任助理 当前,病理面临数字化程度低、数据质量参差不齐等挑战。瑞金医院病理科依托医院大模型布局,基于百万级数字切片库,打造了瑞智病理大模型RuiPath。RuiPath实现4大创新,包括场景与应用创新、模型与算法创新、存算协同创新和AI工具链创新。RuiPath覆盖了中国每年90%癌症发病人群罹患的癌种,并且亚专科知识问答深度达到专家级知识水平,改变传统病理医生的工作模式,提升了诊断效率与质量。未来,我们将继续技术创新,推动标准建立,打造“无人病理科”,复制瑞金模式,服务更多患者。 周跃峰 华为公司副总裁、数据存储产品线总裁 AI正在重构千行万业,造就数据的黄金时代,然而AI进入各行业仍面临着三大挑战。首先,从通用大模型到行业场景大模型,需要进行针对性训练;其次,行业场景模型训练和应用落地难,项目开发难度大,人员技术要求高,开发周期不可控;最后,AI集群可用度往往不足50%,需要不断提升全系统调度效率。基于以上挑战,华为提供DCS AI解决方案,构筑行业大模型根基。 (信息来源:华夏病理网)
2 个月前
它的名字叫“凤凰”,它有潜力彻底改变农业——霍恩海姆大学研发的这款高科技农业机器人,能够利用人工智能自主耕作田间。 乍一看,它似乎并不起眼,但“凤凰”农业机器人可以自主耕种田地、照料果园,甚至还能完成更多任务,因为它内部搭载了先进的电子技术与人工智能。霍恩海姆大学植物生产过程工程系主任 Hans W. Griepentrog 和他的研究团队,将 Phoenix 研发成一种数字化农业工具,旨在为行业树立新标准。其潜力显然也得到了柏林方面的认可。 2022年,这款机器人在联邦政府数字峰会上亮相,并受到德国总理奥拉夫·朔尔茨的亲自关注。会上,Griepentrog 表达了他的核心观点:“我们希望展现,农业科学在数字化领域正取得特别创新的进展。” 其目标是促进未来农业与环境保护、物种保护之间的协调。 机器人能够区分杂草与农作物 在霍恩海姆大学的试验田里,这款机器人已被训练以大幅减少化肥和农药的使用。Griepentrog 解释道:“得益于智能传感器技术,它可以精准区分栽培作物和杂草。” 机器人配备摄像头和激光传感器来记录植物,并借助人工智能算法实时分析数据。 其核心技术之一是机械除草。用于除草的工具安装在机器后部。此外,霍恩海姆大学的研究团队还开发了一款应用程序,使 Phoenix 具备白菜种植和养护能力。Griepentrog 说道:“这样的技术在过去是前所未有的。” 与传统方式不同,这款机器人不是用刀片大面积翻耕土壤,而是每隔 60 厘米精准打开刀片,让一颗幼苗通过有机玻璃管准确落入开口处的土壤中。这意味着只有在必要时才会进行土壤干预,从而降低设备的牵引力需求,减少能源消耗。 无土壤压实、无气候相关污染 Phoenix 还能自主播种单粒作物,这也是一项突破性创新。Griepentrog 和团队自主研发了传感器、工具及精准的导航系统,至少在基础版本中如此。 这款小型农业机器人重 420 公斤,相较于传统的大型拖拉机,其行驶速度较慢,但作业精度更高。Griepentrog 解释道:“这减少了劳动力成本,提高了自动化水平,同时避免了大型机械对土壤造成的压实问题。” 另一个优势是环保性:“我们不会产生任何气候相关的污染物。” Phoenix 采用电动橡胶履带驱动,农民可以通过光伏发电或利用沼气转换电能,为机器人提供能源。 这款全能机器人还能自动修剪果树 如果配备合适的工具,Phoenix 还能修剪果树。它能够利用人工智能分析果园状况,判断哪些树木需要修剪,并自动操作锯子完成作业。然而,研究团队的目标远不止于此。 除了进一步优化杂草识别技术外,Phoenix 未来还将学习“根下施肥”技术,特别适用于长期干旱后干燥的土壤。该技术旨在将养分直接输送至土壤深处,而非仅撒在土壤表层,从而提高肥料利用率。Griepentrog 表示:“这是一项完全革命性的技术。” 通过使用不含合成化学物质的矿物肥料,这款机器人或将推动农业迈向有机与传统农业结合的“中间道路”。 目前,多个研究项目正在探索 Phoenix 的不同应用场景。联邦研究部为“无化学合成植物保护的农业 4.0” 研究项目提供了 4.5 年的资金支持,总额达 530 万欧元,其中 450 万欧元拨给霍恩海姆大学。该校负责协调此项目,并参与 20 个专业领域的 16 个子项目。此外,白菜的可持续种植研究属于“可持续小规模农业的数字价值链”联合项目的一部分,霍恩海姆大学已从联邦食品和农业部获得 200 万欧元的资助。 (图片来源:德国 Hochenheim 大学)
2 个月前
借助SAP Business AI,您可以在面对挑战时获得支持,并实现潜在的数百万欧元成本节省。 SAP提供具备直观、灵活且强大AI功能的应用程序,帮助客户优化业务流程。 通过AI代理和全面的流程上下文提升企业整体效率 Joule中的AI代理能够理解您的业务流程,并安全、受控地访问您的数据。凭借超过1,300种技能,它们可使导航和交易任务的执行速度提高多达90%,并跨所有企业流程协同工作,以解决最复杂的任务。 将企业生产力提高30% SAP目前拥有130多个活跃的AI场景,并计划到2025年底增加至400个,为各个业务领域提供广泛的AI解决方案,助您更快、更高效地达成目标。 领先AI供应商为您的个性化业务需求提供定制支持 借助创新的AI技术以及我们顶级合作伙伴的大型语言模型,SAP Business AI可为您提供无缝集成的智能解决方案。 大幅提高企业团队的工作效率:在供应链、财务、采购、HR、销售等业务领域,创造切实的价值。 1,借助AI构建更敏捷、更具韧性且以客户为中心的供应链 通过优化运营、构建高效供应链并促进可持续增长的AI,供应链团队可以实现更优表现。 高效、敏捷且具备韧性的供应链比以往任何时候都更为重要。AI可帮助您获取深刻洞察力,提高供应链的韧性,确保全球物流畅通无阻。您可以充分利用日益复杂的供应链,预测风险并采取即时纠正措施。快速评估风险和潜在延误,关注最关键的货运任务,并确保按时交付。 更快发现错误 及早识别制造过程中的偏差,提高员工生产力,确保质量一致性,并将检验成本降低25%²。 降低50%²的交付成本 自动化入库处理以降低物流成本,检测异常情况,并自动录入数据以加速处理。 2,利用AI优化财务管理,提高收入,增强风险控制 财务团队可借助AI优化运营现金流、提高收入增长,并优化净利润率,为企业创造真正的价值。 应收账款核对工作量减少71% 消除人工付款核对,实现AI驱动的对账和付款通知提取,优化应收账款管理。 降低因欺诈造成的收入损失 利用AI与SAP S/4HANA Cloud Private Edition中的SAP Business Integrity Screening,提前识别并防范欺诈行为。 3,借助AI优化采购支出、降低风险并提升供应链效率 利用Business AI提高供应商绩效和运营效率,同时节省成本。 市场竞争分析速度提升90% 借助AI优化市场调研和供应商选择,加快品类策略制定。 采购流程信息搜索速度提高95% 通过Joule的自然语言界面快速查找采购数据,加速决策制定。 外部职位描述创建速度加快85% 将要点转化为详细的职位描述,并翻译成20多种语言。借助智能筛选,精准匹配顶尖人才。 4,利用AI赋能人力资源,使员工成功并提升企业敏捷性 人力资源团队可利用AI提升员工参与度和留存率,更快招聘合适人才,并节省成本。 日常HR任务完成速度提高90% Joule集成自然语言处理,可轻松导航SAP SuccessFactors模块,快速完成招聘、入职、薪资发放等任务。 申请审核速度提升80% 加快招聘决策,通过AI筛选候选人,使其资质与职位要求精准匹配。 5,利用AI提高销售和服务效率,提供卓越客户体验 通过降低获客成本、优化销售周期并提升客户忠诚度,提高企业收入。 SAP Business AI for Customer Experience助力销售、服务和营销全流程的智能化,借助Joule释放洞察力,增强业务影响力,提供个性化体验,助力企业提升客户互动质量。 显著缩短案件转办和查询时间 利用Joule代理自动分类客户案例,主动提供答案,优化销售和服务质量。 销售例行任务完成速度提高80% 在SAP Sales Cloud中与Joule Copilot“对话”,利用智能分析将潜在客户转化为实际客户。 6,利用AI优化营销和电商,提升客户互动 利用AI扩展全渠道互动,提供个性化体验,优化电商产品搜索,提高企业收入和利润率。 目标客户群体细分速度提高90%² 借助Joule快速创建客户群体细分,利用AI轻松制定和衡量营销旅程及关键成功指标。 实现更精准的个性化推荐 基于客户行为、购买历史和搜索模式提供个性化推荐。分析库存、销售趋势和订单历史,预测需求并优化库存水平。 7,利用AI提升IT和开发能力,加速产品创新 通过AI提高企业业务连续性,提升生产力和系统可用性,减少安全事故,并提高IT项目成功率。 SAP BTP凭借生成式AI,优化数据管理、自动化流程、推动创新,并提升开发人员效率,让您的团队实现更大成就。 应用程序开发成本降低30% 借助SAP Build Code的AI驱动编码工具,加速应用开发。 SAP应用管理效率提升75% 通过SAP Automation Pilot的智能提示,自动化工作流,减少手动DevOps任务。 (信息来源:SAP官网)
2 个月前
德国心血管研究中心(DZHK)的跨学科团队在一项长期人口研究中发现,人工智能(AI)能够根据心电图数据确定心脏的生物年龄。与此同时,人工智能可以对心血管风险的增加提供早期预警。 利用大量长期数据进行人工智能分析 研究人员使用了德国一项长达 20 多年的人口研究的长期数据。该 AI 模型首先使用来自巴西的心电图数据进行训练,然后应用于欧洲队列。 结果显示,预测的心脏生物年龄与受试者的实际健康状况高度一致。尤其令人兴奋的是,这种方法是非侵入性的,仅通过分析心电图数据即可进行。 心电图年龄与疾病风险的关系 研究发现,心电图年龄超过实际年龄8岁以上的人,发生心律失常、心力衰竭和死亡率的风险显著增加。此外,通过考虑几次连续的心电图测量,可以做出更精确的风险评估。 死亡风险的增加尤为显著:当不仅使用单次心电图测量值而是使用一系列测量值进行分析时,死亡风险从 1.43 上升到 1.65。这强调了长期持续监测心脏健康的重要性。 通过人工智能诊断实现个性化预防 研究结果表明,人工智能支持的诊断系统可以帮助在早期识别心血管风险增加的人。早期发现可以在严重疾病发生之前采取有针对性的预防措施。从长远来看,这项技术可以融入常规健康检查中,帮助医疗专业人员识别有风险的患者。 “我们的研究表明,人工智能能够检测到心电图上表明心脏老化加速的细微变化。这可能为个性化医疗开辟新的可能性,并有助于在早期预防心血管疾病,”这项研究的主要作者、哥廷根大学医学中心医学信息学研究所的 Philip Hempel 先生解释道。 人工智能模型的透明度和可解释性 这项研究的一个重要方面是人工智能系统的透明度。 “通过将经典的心电图参数整合到我们的分析中,我们将人工智能技术与经过验证的循证医学结合起来。这不仅为医生提供了宝贵的附加信息,也为他们的诊断提供了透明的基础,”Hempel先生 解释道。这种方法增加了对人工智能技术的信任,并使患者护理变得更加明智和易于理解。 该研究由哥廷根大学医学中心指导并与 DZHK 合作进行。来自德国、瑞典和巴西的研究人员共同进行了此项分析。基础数据来自 SHIP (波美拉尼亚健康研究)所,这是一项针对德国北部人口的全面长期研究活动。 (文章来源:德国工程师网站)