NVIDIA NIM 是 NVIDIA AI Enterprise 的一部分,是一套加速推理微服务,允许企业组织在云、数据中心、工作站和 PC 上运行 AI 模型。借助行业标准 API,开发者可以使用几行代码借助 NIM 部署 AI 模型。NIM 容器可与 Kubernetes (K8s) 生态系统无缝集成,从而实现容器化 AI 应用程序的高效编排和管理。立即借助 NIM 加速您的 AI 应用程序的开发。
NVIDIA NIM 是英伟达推出的一款人工智能模型推理微服务,它既包括软件部分,也与硬件有密切的关联。
NIM 旨在让开发者更轻松地将人工智能模型部署到其应用程序中。它允许开发人员利用 NVIDIA GPU 加速人工智能模型的训练和推理过程,提高性能和效率。
对于开发者来说,NIM 带来了多方面的好处,例如:
NIM 中的推理引擎,如 Triton Inference Server、TensorRT 和 TensorRT-LLM,是 NVIDIA 支持的在 GPU 和 CPU 上提供模型推理的开源软件,它们为 NVIDIA GPU 高效推理计算进行了优化。
NVIDIA NIM 既可以应用于机器学习任务,也可以应用于深度学习任务。
在机器学习领域,例如传统的决策树、支持向量机等模型的推理部署中,可以使用 NVIDIA NIM 来优化模型的推理过程,提高推理效率和性能。比如在一些基于规则的分类、回归任务中
在深度学习方面,像卷积神经网络(CNN)、循环神经网络(RNN)、长短时记忆网络(LSTM)以及 Transformer 架构等模型的推理和部署,NVIDIA NIM 都能发挥重要作用。例如图像识别任务中使用的深度卷积神经网络模型,或者自然语言处理中的语言模型等深度学习任务
总的来说,NIM 主要是一种软件服务,但它的性能和功能需要与 NVIDIA 的硬件(如 GPU)协同工作,以实现对人工智能模型的高效推理和部署。它为开发者提供了一个方便利用 NVIDIA 硬件加速能力的解决方案,使得开发者能够更高效地将人工智能技术应用到其应用程序中。
信息来源:豆包AI生成
11 天前
2005年成立的美国老牌服务器厂商Database Mart正推出春季大促活动,低至5折,超40款GPU服务器套餐配备独立英伟达显卡,如NVIDIA P1000, GTX 1650, RTX 3060, A5000, A6000, H100等,满足各等级预算。支持AI渲染/推理/训练,3D渲染,直播,模拟器多开,指纹浏览器,区块链,爬虫,音视频编辑,深度学习等多种用途。 查看显卡服务器主站:GPU Mart 查看中文网: 鹄望云官网 推荐Database Mart的理由 🛠️ 核心优势解析: 【独占计算资源】专属美国IP+独享GPU:告别共享云GPU的资源争抢问题,GPU VPS与GPU独立服务器均配备独立显卡与固定IP,确保高性能计算环境零干扰,推理训练更稳定。 【开箱即用】预集成AI开发套件:内置Ollama、Stable Diffusion等工具链,一键部署机器学习/AI开发环境。 【全天候智囊支持】多场景KB支持,7×24小时中英文专家护航:GPU架构师团队随时待命,零额外成本获取专业技术支持。 【无瓶颈数据传输】全系方案标配无限流量通道,保障大规模数据吞吐。 【企业级安全防护】智能DDoS防火墙,多层分布式防御体系 🚨GPU服务器春季限时特惠: 精选机型立省50%,算力采购成本触底! 👉 立即抢购 备注试用(free trial)提交订单即可免费测试。非促销款还可享受本站特别折扣,用折扣码下单,立享永久8折优惠。 折扣码 鹄望云折扣码:TC1ONYWD GPU Mart折扣码:TC12U2ZS 选型建议: 学习/测试:选GT730/P620 中小模型:RTX 2060/T1000/A4000 VPS 企业级AI:A5000/A6000/A100 客户常见问题 Q:是否支持Windows系统? A:全系列支持Windows/Linux,可自由重装 Q:GPU服务器能否跑Llama3? A:RTX A4000可流畅运行7B/13B模型,A6000支持70B参数 Q:是否支持使用? A:提供24小时免费测试 点击查看更多爆款 ! 如需中文和支付宝付款服务,查看鹄望云官网,联系客服获取同等促销价。
15 天前
2005年成立的美国老牌服务器厂商Database Mart正推出春季大促活动,低至5折,超40款GPU服务器套餐配备独立英伟达显卡,如NVIDIA P1000, GTX 1650, RTX 3060, A5000, A6000, H100等,满足各等级预算。支持AI渲染/推理/训练,3D渲染,直播,模拟器多开,指纹浏览器,区块链,爬虫,音视频编辑,深度学习等多种用途。 查看显卡服务器主站:GPU Mart 查看中文网: 鹄望云官网 点击查看多种爆款 ! 如需中文和支付宝付款服务,查看鹄望云官网,联系客服获取同等促销价。 Database Mart Database Mart 是一家成立于2005年的美国服务器厂商。主要提供独立的GPU显卡服务器、物理专用服务器和VPS虚拟机的租赁托管服务,也提供VPS、域名、SSL等多种托管服务。 (信息来源:美国 Database Mart 公司 )
1 个月前
数据标签业务(Data Annotation / Data Labeling)是人工智能(AI)产业链中的重要环节,主要为机器学习模型提供高质量的训练数据。随着人工智能技术的广泛应用,中国的数据标注行业迎来了巨大的商业机遇,同时也面临一系列挑战。本文将从市场需求、政策环境、技术发展、产业竞争等多个维度进行分析。 一、数据标签业务的商业机遇 1. AI产业高速发展带动数据需求增长 中国人工智能产业正在快速发展,自动驾驶、智能客服、智能安防、医疗AI等领域对高质量数据标注的需求不断增长。例如: 自动驾驶:需要海量的图像、视频数据进行道路标注,如车道线、行人、交通标志等。 智能医疗:需要专业医学影像数据标注,如CT、MRI图像的病变区域标注。 电商与内容推荐:需要大量的文本、语音、图像数据进行分类、情感分析等标注。 数据质量直接决定了AI模型的性能,因此高质量的数据标注服务成为AI企业的刚需。 2. 中国具备全球领先的“数据优势” 中国的互联网和移动应用市场庞大,数据量丰富,包括社交、购物、金融、交通、医疗等多个领域的数据资源。相比欧美国家对数据隐私的严格监管,中国本土市场的数据可获取性更强,为数据标注业务提供了丰富的原材料。 3. 人力成本相对较低,适合规模化发展 尽管中国的劳动力成本逐年上升,但相比欧美仍然较低,特别是在三、四线城市和农村地区。大量低技术工人可以通过简单培训参与数据标注工作,形成规模化的数据加工产业链。 4. 政策支持及人工智能发展战略 中国政府高度重视人工智能发展,出台多项支持政策,如《新一代人工智能发展规划》,鼓励企业布局AI数据相关业务。此外,地方政府也在推动“AI+产业”落地,为数据标注公司提供政策支持、产业园区资源等。 5. 行业逐步向标准化、自动化升级 随着AI技术的发展,数据标注行业正在向更高效的方向演进: 半自动化标注:利用预训练AI模型辅助人工标注,提高效率。 智能质量控制:采用机器学习算法对标注数据进行自动审核,减少人工错误。 行业标准化:政府与企业推动建立统一的标注标准,提高数据质量。 这些趋势有助于降低成本、提高效率,使数据标注企业更具竞争力。 二、数据标签业务的商业挑战 1. 低端市场竞争激烈,价格战严重 数据标注行业进入门槛较低,导致大量小公司涌入市场,尤其是低端手工标注业务竞争激烈,利润率较低。许多企业通过压低价格争夺订单,导致行业整体盈利能力下降。行业集中度低,超500家中小标注企业竞争,图像标注单价从0.5元/张降至0.2元/张(2020-2023年),毛利率普遍低于15%。 2. 数据隐私与安全监管趋严 随着《数据安全法》《个人信息保护法》等法规的实施,数据使用的合规性要求提高,许多企业在数据收集和处理过程中需要满足严格的合规要求。这对数据标注企业提出更高的合规成本,如: 数据脱敏处理:需要去除敏感信息,增加处理成本。 数据存储合规性:要求数据存储在国内,并满足安全要求。 3. 业务同质化,缺乏技术壁垒 目前市场上的数据标注公司大多依赖人力,缺乏自主技术创新,难以形成核心竞争力。随着AI自动化标注技术的进步,传统的纯人工标注模式可能被取代,低端数据标注公司面临淘汰风险。 4. AI自动化标注技术的冲击 AI本身的发展正在威胁传统人工数据标注市场。例如: 计算机视觉:自动图像识别和标注技术正在进步,减少人工标注需求。 自然语言处理(NLP):自动文本分析工具可以降低文本标注的人工需求。 虽然完全替代人工标注还需时间,但对于低难度标注任务,AI已经可以大幅减少人工参与。 5. 客户集中度高,议价能力低 目前中国数据标注市场的大客户主要是科技巨头(如BAT、华为、字节跳动等),这些企业的议价能力极强,小型标注公司难以获取高利润订单。此外,大型科技公司正在自建数据标注团队,减少对外部供应商的依赖,使数据标注企业的市场空间进一步压缩。 三、未来发展方向与建议 1. 向高价值标注业务转型 企业应避免陷入低端市场的价格战,转向更专业化、高价值的标注领域,如: 医疗AI标注(高精度医学影像、基因数据) 自动驾驶高精度3D点云标注 金融数据标注(信用风险评估、反欺诈分析) 这些领域要求专业知识,竞争相对较小,利润率更高。 2. 发展智能标注平台,提高自动化水平 企业应开发自有标注平台,结合AI自动化工具,提升标注效率。例如: 采用预标注+人工审核模式,提高效率。 发展众包平台,让自由职业者参与标注任务,降低成本。 引入区块链溯源技术,提高数据可信度。 3. 加强数据安全与合规管理 数据合规是未来发展的关键,建议: 采用数据脱敏技术,确保用户隐私安全。 获得ISO 27001信息安全认证,增强市场信任度。 避免使用敏感数据,规避法律风险。 4. 拓展海外市场 相比中国市场竞争激烈,欧美市场的数据标注需求仍然较大,且愿意支付更高的价格。可以通过合作或跨境平台提供数据标注服务,拓展海外业务。 5. 与AI企业深度合作,提供定制化服务 与AI企业建立深度合作,提供更符合客户需求的标注服务,如: 嵌入式标注服务(在AI开发平台上直接提供标注服务) 数据增强+标注(同时提供数据扩增和标注服务) SaaS模式标注平台(提供在线标注工具,企业自行标注) 四、结论 中国的数据标签行业正处于快速发展阶段,市场潜力巨大,但也面临激烈竞争和技术变革带来的挑战。未来,企业应摆脱低端市场竞争,向高价值、智能化、合规化方向发展,才能在行业中占据更有利的位置。同时,通过国际化布局和技术创新,也能进一步拓展市场空间,实现长期增长。 (图片来源:levity.ai)
1 个月前
德国Comarch ERP Enterprise 是一款全面的企业资源规划 (ERP) 系统,专为寻求在流程方面提高 ERP 系统用户技术进步水平的企业而设计。它是一款现代化的 ERP 系统,具有高度的灵活性和可扩展性,能够满足各种规模和行业的企业的需求。 Comarch企业软件公司最近撰文:“ChatERP: Quantensprung im Enterprise-Resource-Planning”,即ChatERP在企业资源规划中的巨大进步。这份白皮书提到ERP系统是企业的核心,整合了关键业务流程和数据。过去,AI在ERP中的应用成本高且复杂,主要适用于大企业。但生成式AI和大型语言模型(如ChatGPT)的出现改变了这一状况,使得中小企业也能利用AI提升竞争力。这里的关键点是生成式AI降低了使用门槛,使得ERP中的AI助手变得可行。 1. 引言与背景 ERP系统的重要性:作为企业核心,整合关键业务流程(生产、采购、销售等)及数据(客户、订单、库存等)。AI在ERP中的演变:传统AI(如机器学习)成本高、数据需求大,仅适用于大企业;生成式AI(如ChatGPT)通过大型语言模型(LLM)降低门槛,使中小企业也能利用AI提升竞争力。ChatERP的定位:Comarch ERP Enterprise(6.4+版本)内置的多语言AI助手,通过自然语言交互革新ERP使用方式。 2. 改善可用性与降低使用障碍 自然语言交互:用户可通过对话形式与ERP系统互动,支持多语言,会话上下文感知。 动态帮助系统:基于RAG(检索增强生成)技术,AI助手深度理解ERP系统细节,无需额外训练。替代静态文档,提供实时、步骤化指导(如创建新文章、导航功能)。 降低学习成本:新用户快速上手,缩短培训时间;有经验用户更快掌握新功能。减少对IT支持的依赖,释放IT团队资源用于创新任务。 3. 通过语音/文本命令高效控制应用 多模态交互:支持传统UI操作与语音/文本指令结合,提升效率。应用场景: 快速导航:直接跳转深层功能(如“打开分类为家居用品的文章”)。数据操作:创建/打开记录(如“为Mustermann公司新建订单”并预填数据)。自动化任务:处理重复性工作(数据清理),但关键操作需人工审核。 类似消费级助手(如Siri):但针对企业复杂场景优化,通过API集成ERP功能。 4. 通过聊天探索ERP数据价值 数据查询与分析: 自然语言生成报告(如“显示上季度各地区销售额”),自动生成图表或摘要。预测与洞察:销售趋势预测、库存优化建议。 降低数据分析门槛:非技术用户无需复杂技能即可获取业务洞察,支持数据驱动决策。 5. 安全与合规 权限管理:通过架构设计确保数据访问合规性(如Berechtigungen权限控制)。数据隐私:企业数据仅用于内部处理,符合GDPR等法规。 6. 实施建议与结论 采用策略: 选择兼容现有系统的AI助手(如ChatERP),分阶段部署,从小任务开始。培训员工适应新交互方式,结合传统与AI操作以最大化效率。 未来潜力: 持续优化AI模型,扩展应用场景(如供应链优化、客户行为分析)。推动ERP从“记录系统”向“智能决策支持系统”转型。 核心价值总结: ChatERP通过自然语言交互、动态帮助、语音控制及智能数据分析,显著提升ERP系统的易用性、效率和决策支持能力,尤其助力中小企业以更低成本实现数字化转型。
2 个月前
借助SAP Business AI,您可以在面对挑战时获得支持,并实现潜在的数百万欧元成本节省。 SAP提供具备直观、灵活且强大AI功能的应用程序,帮助客户优化业务流程。 通过AI代理和全面的流程上下文提升企业整体效率 Joule中的AI代理能够理解您的业务流程,并安全、受控地访问您的数据。凭借超过1,300种技能,它们可使导航和交易任务的执行速度提高多达90%,并跨所有企业流程协同工作,以解决最复杂的任务。 将企业生产力提高30% SAP目前拥有130多个活跃的AI场景,并计划到2025年底增加至400个,为各个业务领域提供广泛的AI解决方案,助您更快、更高效地达成目标。 领先AI供应商为您的个性化业务需求提供定制支持 借助创新的AI技术以及我们顶级合作伙伴的大型语言模型,SAP Business AI可为您提供无缝集成的智能解决方案。 大幅提高企业团队的工作效率:在供应链、财务、采购、HR、销售等业务领域,创造切实的价值。 1,借助AI构建更敏捷、更具韧性且以客户为中心的供应链 通过优化运营、构建高效供应链并促进可持续增长的AI,供应链团队可以实现更优表现。 高效、敏捷且具备韧性的供应链比以往任何时候都更为重要。AI可帮助您获取深刻洞察力,提高供应链的韧性,确保全球物流畅通无阻。您可以充分利用日益复杂的供应链,预测风险并采取即时纠正措施。快速评估风险和潜在延误,关注最关键的货运任务,并确保按时交付。 更快发现错误 及早识别制造过程中的偏差,提高员工生产力,确保质量一致性,并将检验成本降低25%²。 降低50%²的交付成本 自动化入库处理以降低物流成本,检测异常情况,并自动录入数据以加速处理。 2,利用AI优化财务管理,提高收入,增强风险控制 财务团队可借助AI优化运营现金流、提高收入增长,并优化净利润率,为企业创造真正的价值。 应收账款核对工作量减少71% 消除人工付款核对,实现AI驱动的对账和付款通知提取,优化应收账款管理。 降低因欺诈造成的收入损失 利用AI与SAP S/4HANA Cloud Private Edition中的SAP Business Integrity Screening,提前识别并防范欺诈行为。 3,借助AI优化采购支出、降低风险并提升供应链效率 利用Business AI提高供应商绩效和运营效率,同时节省成本。 市场竞争分析速度提升90% 借助AI优化市场调研和供应商选择,加快品类策略制定。 采购流程信息搜索速度提高95% 通过Joule的自然语言界面快速查找采购数据,加速决策制定。 外部职位描述创建速度加快85% 将要点转化为详细的职位描述,并翻译成20多种语言。借助智能筛选,精准匹配顶尖人才。 4,利用AI赋能人力资源,使员工成功并提升企业敏捷性 人力资源团队可利用AI提升员工参与度和留存率,更快招聘合适人才,并节省成本。 日常HR任务完成速度提高90% Joule集成自然语言处理,可轻松导航SAP SuccessFactors模块,快速完成招聘、入职、薪资发放等任务。 申请审核速度提升80% 加快招聘决策,通过AI筛选候选人,使其资质与职位要求精准匹配。 5,利用AI提高销售和服务效率,提供卓越客户体验 通过降低获客成本、优化销售周期并提升客户忠诚度,提高企业收入。 SAP Business AI for Customer Experience助力销售、服务和营销全流程的智能化,借助Joule释放洞察力,增强业务影响力,提供个性化体验,助力企业提升客户互动质量。 显著缩短案件转办和查询时间 利用Joule代理自动分类客户案例,主动提供答案,优化销售和服务质量。 销售例行任务完成速度提高80% 在SAP Sales Cloud中与Joule Copilot“对话”,利用智能分析将潜在客户转化为实际客户。 6,利用AI优化营销和电商,提升客户互动 利用AI扩展全渠道互动,提供个性化体验,优化电商产品搜索,提高企业收入和利润率。 目标客户群体细分速度提高90%² 借助Joule快速创建客户群体细分,利用AI轻松制定和衡量营销旅程及关键成功指标。 实现更精准的个性化推荐 基于客户行为、购买历史和搜索模式提供个性化推荐。分析库存、销售趋势和订单历史,预测需求并优化库存水平。 7,利用AI提升IT和开发能力,加速产品创新 通过AI提高企业业务连续性,提升生产力和系统可用性,减少安全事故,并提高IT项目成功率。 SAP BTP凭借生成式AI,优化数据管理、自动化流程、推动创新,并提升开发人员效率,让您的团队实现更大成就。 应用程序开发成本降低30% 借助SAP Build Code的AI驱动编码工具,加速应用开发。 SAP应用管理效率提升75% 通过SAP Automation Pilot的智能提示,自动化工作流,减少手动DevOps任务。 (信息来源:SAP官网)
2 个月前
作为工业人工智能产品平台,可以有几种不同的商业模式和产品方向: 1. AI SaaS 平台(软件即服务) 核心功能: 预测性维护(Predictive Maintenance):利用AI分析设备数据,提前预警故障,减少停机时间。 质量检测(AI-powered Quality Inspection):基于计算机视觉的自动缺陷检测,提高生产效率。 智能调度(Smart Scheduling):优化生产计划,提高资源利用率。 工业数据分析(Industrial Data Analytics):提供数据可视化、智能BI、异常检测等功能。 盈利模式: 按订阅收费(SaaS)、按API调用次数收费,或者定制化解决方案。 2. 工业AI解决方案(定制化产品) 面向行业: 制造业(智能生产、智能检测) 物流与供应链(智能仓储、自动调度) 能源与电力(设备运维、能效优化) 产品类型: 软硬件结合的工业AI系统,如 AI+IoT 设备。 AI算法模型,提供API或本地部署。 定制AI解决方案,针对企业需求开发。 盈利模式: 项目制收费、软件授权、数据订阅服务等。 3. 工业AI开发平台(PaaS) 提供开发工具、API、预训练模型,帮助企业快速搭建工业AI应用。 目标用户:工业AI开发者、企业研发团队。 盈利模式: 按API调用、计算资源或企业级授权收费。
3 个月前
搭建工业AI咨询平台在生产调度、预测性维护、缺陷检测等场景中,AI技术能够显著提升工业企业的效率和竞争力。
4 个月前
DeepSeek(深度求索)是一家专注于大语言模型(LLM)和相关技术研发的创新型科技公司,成立于2023年7月,由知名量化私募巨头幻方量化创立。DeepSeek的AI产品主要包括以下几类: 语言模型 DeepSeek-LLM:如包含67亿参数的DeepSeek-67b-base模型,基于海量的中英文token数据集训练,可用于多种自然语言处理任务. DeepSeek-Coder:是代码语言模型,如DeepSeek-Coder-v2-instruct在代码特定任务中性能可比肩GPT-4 Turbo,可辅助编程及代码相关的自然语言处理任务. DeepSeek-Math:旨在提升数学推理能力,例如DeepSeek-Math-7b-instruct等模型,可解决数学问题、进行数学相关的文本生成和问答等. DeepSeek-Prover: 主要用于定理证明,通过优化训练和推理过程,为相关领域的研究和应用提供支持. 多模态模型 DeepSeek-VL:是开源的视觉-语言模型,可用于真实世界的视觉和语言理解应用,如视觉问答、图像字幕生成等. 应用平台 乾坤圈(AI Agent智能体平台):基于深擎自研的流程引擎研发,能够基于海量的大模型组件进行极速灵活编排,满足大模型场景快速搭建能力需求,内置了20多个工作流最佳实践、50多项金融领域的特色处理组件以及30多款应用场景,主要应用于金融行业. Janus:是统一的多模态理解和生成模型,可应用于多种需要多模态交互的场景. 内容产品与服务 个性化推荐引擎:如穿云箭,依托智能算法模型,基于用户的浏览行为,实现精准的内容推荐,帮助金融机构了解客户需求. 内容服务平台:如风火轮,整合各大财经资讯和自媒体内容,通过SaaS模式分发给客户,让信息获取及时可靠;白羽扇智能内容处理中心则进一步提高了内容分发的个性化和实时性,对投资标的、财经事件进行动态打标,优化客户体验.
4 个月前
中国政府对美国半导体巨头NVIDIA采取了一系列反制措施,这不仅直接冲击了NVIDIA在中国市场的业务,也引发了市场对人工智能(AI)领域领军企业NVIDIA繁荣时代是否即将结束的广泛担忧。 中国的反击措施包括但不限于加强对外国半导体技术的出口限制、加大对本土半导体产业的财政和政策支持,以及推动国内企业在高端芯片技术领域的自主研发。这些措施的核心目的是减少对外国技术的依赖,特别是在关键的AI和高性能计算领域。 作为全球最大的AI芯片供应商之一,NVIDIA在中国市场拥有显著的份额。中国不仅是NVIDIA产品的重要销售市场,也是其研发和创新的重要基地之一。然而,随着中国政府政策的转向,NVIDIA在这一关键市场的前景变得不确定。 分析师指出,中国的这一系列举措可能会导致NVIDIA在中国的收入显著下降,从而对其整体财务表现产生负面影响。此外,这也可能加速中国本土半导体企业的崛起,如中芯国际和紫光国微等,这些企业正致力于在高端芯片领域与NVIDIA竞争。长远来看,这种竞争可能会挑战NVIDIA在全球AI芯片市场的领导地位。 市场对这一消息的反应迅速而强烈。NVIDIA的股票在消息公布后迅速下跌,跌幅超过了5%,投资者对于NVIDIA未来在中国市场的前景以及整个AI行业的发展趋势感到不确定。一些投资者甚至开始重新评估其在NVIDIA股票上的投资组合,担心这一事件可能是一个更广泛市场动荡的前兆。 这一事件标志着中美在高科技领域竞争的加剧,特别是在关键的半导体和人工智能技术领域。双方的政策博弈不仅影响到企业的商业运营,也可能对全球技术发展和产业格局产生深远影响。市场和业界都在密切关注接下来的发展,以评估这些政策变化对NVIDIA和整个AI行业的长期影响。 中国的反击措施使得NVIDIA股票受压,市场对其繁荣时代是否结束产生担忧。这一事件反映了中美在高科技领域的激烈竞争,也可能预示着全球半导体和AI产业格局的重大调整。未来,随着双方政策的进一步演变和市场的自我调整,NVIDIA及其竞争对手将面临新的挑战和机遇。投资者和企业都需要保持高度警惕,密切关注相关动态,以做出明智的决策。 新闻来源:MSN德语财经频道
4 个月前
微软研究院表示,现在的AI具备更强的推理能力,AI模型很快将能够处理更复杂的任务。未来将比ChatGPT等传统的聊天机器人更强大,微软正在利用AI代理来连接整个组织的员工,而且透过硬体升级AI将变得更加节能。 周四OpenAI也表示,将推出高价版的聊天机器人ChatGPT Pro新订阅服务,专门为工程和研究板块设计,月费达到200美元。 AI应用持续往前推动,华尔街方面也正密切关注硅谷,在AI上的巨额投资能否带来营收增长。