德国柏林夏里特医学院的一个研究团队2024年4月在 “Science” 上发表了一项关于人类大脑皮层内神经元连接机制的研究成果。这项研究揭示了人类大脑皮层内的神经元连接呈现出单一方向性和非循环性的特点,这与啮齿类动物大脑中的循环连接模式不同。
研究中重点关注了颞叶新皮层区域,这一区域在人类进化过程中显著扩大,并且与语言产生和认知信号整合等功能密切相关。通过研究,团队发现了以下关键发现:
神经元连接模式:人类大脑皮层中的神经元连接是非循环的前馈结构,这意味着信号在一个方向上传播,而不像啮齿类动物大脑中的循环结构那样来回传递。
连接强度:神经元间的连接强度似乎是独立的,不受连接本身的影响。
实验方法:研究者使用了膜片钳技术来记录多达10个神经元的活动,并且开发了自动化实验步骤来提高效率。通过这种方式,他们能够对大量神经元之间的连接进行分析。
计算能力:数学分析和模拟实验表明,这种前馈结构可以提高递归神经网络的记忆容量,并在语音识别等任务中表现出更好的性能。这意味着这种连接模式支持更高级别的计算能力。
对人工神经网络的影响:这项研究有助于找到生物神经网络和人工神经网络之间的共同原则,并可能启发人工神经网络的设计改进,特别是对于那些旨在模仿生物大脑功能的神经形态计算领域。
该研究成果发表在《科学》杂志上,题目为《人类 2-3 层皮质微型回路中的定向和非循环突触连接》(Directed and acyclic synaptic connectivity in the human layer 2-3 cortical microcircuit)。彭阳帆是该研究的第一作者,他目前在柏林夏里特医学院担任研究员,并致力于神经科学领域的研究。
这项研究不仅增进了我们对大脑功能的理解,还可能对人工智能领域产生重要影响。研究结果有助于找到生物神经网络与人工神经网络之间的共同原则,并可能促进人工神经网络的设计和优化,特别是在神经形态计算领域。
资讯来源:science.org
1 个月前
人工智能是汉诺威工业展上的主导主题 微软正在推出创新助手,旨在显著简化工厂的工作流程。在近日开幕的2025汉诺威工业博览会上,微软展示了可广泛应用于工业领域的具有人工智能的创新虚拟助手。该软件公司在此次展会上展示的新产品之一是“工厂运营代理”(Factory Operations Agent)。 据该公司介绍,这是一个人工智能助手,旨在优化工厂车间的流程。例如,该解决方案使工人能够通过使用自然语言查询来分析机器的数据。 “负责任的经理”将能够优化制造流程。人工智能助手还可以比以前更轻松地识别错误来源并解决问题。 微软德国公司董事总经理阿格尼丝·赫夫伯格在汉诺威工业博览会开幕式上表示,人工智能已经走出了测试和实验阶段,正在工业领域得到广泛应用。 “我们必须毫不犹豫地引入人工智能,否则德国将在国际竞争中落后。我们必须让数据宝藏为人工智能所用。” 德国人工智能已经存在 根据德国数字协会Bitkom的一项代表性调查,42%的德国工业企业已经在生产中使用人工智能,另有三分之一(35%)有相应计划。其中包括机器的监控、机器人和车辆的控制以及能源消耗的优化:这项调查是在德国 552 家拥有 100 名或更多员工的工业制造公司中进行的。82%的公司认同人工智能的使用对于德国工业的竞争力至关重要。 然而,近一半(46%)的人认为德国工业界可能会错过人工智能革命。微软与谷歌、Meta、亚马逊并列成为全球领先的人工智能系统提供商,部分原因是微软首席执行官萨蒂亚·纳德拉早期投资数十亿美元与加州人工智能初创公司OpenAI及其开发的聊天机器人ChatGPT进行全面合作。 (资讯来源: tagesschau.de, 图片来源: heise.de)
1 个月前
这项研究由科布伦茨应用科学大学和波恩大学医院的医学研究人员团队完成,他们开发了一种名为 OptAB 的 AI 模型,用于个体化和优化地选择治疗败血症的抗生素。该模型完全基于 AI 数据驱动,并特别注重在考虑副作用的情况下,为败血症患者选择最合适的抗生素。其目标是最大化治疗成功率,同时显著降低治疗过程中的副作用。 此外,这一研究得到了莱法州卫生部门的资助,并被认为是首个能够为败血症患者提供个性化抗生素优化选择的在线模型。由于败血症治疗开始时病原体通常未知,医生常常依赖广谱抗生素,而 OptAB 模型可以通过分析患者的临床数据、病原体信息及药物敏感性,帮助医生快速制定更精准的治疗方案。相关成果已发表在医学期刊《npj·digital medicine》上。 据开发人员称,该 AI 模型是使用历史败血症病例的数据创建的,是世界上第一个此类 AI 模型。找到正确的药物组合来治疗败血症可以大大增加康复的机会,并消除对可能导致严重副作用的广谱药物治疗的需求。 (资讯来源:德国联邦外贸与投资署)
1 个月前
delphi GmbH 是一家成立于 2001 年的德国创新型企业,总部位于德国,专注于健康促进和预防领域。自创立以来,公司从最初的药物滥用预防和咨询服务起步,逐步发展为一家将科学研究、数字化技术与实践应用相结合的行业先锋。近年来,delphi GmbH 在人工智能(AI)领域的投入尤为突出,其标志性项目之一——SuchtGPT,充分展示了公司在健康服务中应用AI的雄心与能力。 公司概况与核心业务 delphi GmbH 的使命是通过科学方法和创新手段提升人们的健康与福祉。公司业务涵盖在线咨询与干预项目、项目评估与研究、健康信息传播以及创新项目开发。其团队由心理学、公共健康、社会工作等领域的专家组成,强调将理论知识转化为实际解决方案。服务的客户包括公共机构和私营企业,业务范围覆盖德国及相关合作网络。 delphi 的核心价值体现在四个方面:科学性(以实证研究为基础)、实用性(贴近实际需求)、数字化(利用现代技术接触广泛人群)以及合作性(与客户共同制定策略)。这些理念不仅贯穿其传统健康服务,也为其AI相关业务奠定了基础。 AI业务:SuchtGPT 项目 在人工智能领域,delphi GmbH 的代表性项目是 SuchtGPT(“Gestaltung, Programmierung und Testung eines KI-basierten Chatbots für Suchtfragen” 的缩写,意为“设计、编程和测试用于毒瘾问题的AI聊天机器人”)。该项目由德国联邦卫生部(Bundesministerium für Gesundheit, BMG)资助,旨在开发一个基于AI的聊天机器人,为用户提供毒瘾相关问题的低门槛、匿名支持。 SuchtGPT 的目标是通过一个符合欧盟数据保护标准(DSGVO-konform)的数字化工具,帮助用户获取信息或引导他们进入专业戒毒体系。项目利用大型语言模型(Large Language Model, LLM),结合毒瘾领域的专业知识和沟通技巧,使聊天机器人能够独立、准确地回答用户提问。开发过程采用参与式方法,广泛吸纳毒瘾救助领域的利益相关者(如专业协会、戒毒机构和政策制定者)的意见,确保工具的实用性。 项目实施分为多个阶段:前期技术框架搭建与背景研究、原型开发与测试、以及基于数据分析的持续优化。截至 2025 年 3 月,SuchtGPT 仍处于开发阶段。2025 年 1 月 15 日,项目团队举办了一场数字化信息活动,向超过 250 名参与者展示了项目规划和生成式AI的应用成果。更多进展可通过其官网跟踪。 AI与健康服务的融合 SuchtGPT 项目不仅体现了 delphi 在AI技术上的投入,也延续了其在数字化健康服务领域的专长。公司通过在线咨询平台、健康教育工具等积累了丰富的经验,而 AI 的引入进一步扩展了服务的广度和深度。例如,SuchtGPT 的聊天机器人旨在以更高效、智能的方式触达需要帮助的人群,同时保持服务的科学性和可靠性。这种将AI与健康促进相结合的模式,凸显了 delphi 在行业中的前瞻性。 团队与合作伙伴 delphi 的 AI 项目由一支跨学科团队推动,成员包括心理学专家、技术开发人员和数据分析师。在 SuchtGPT 项目中,公司与 nexus Institut 等合作伙伴协作,负责参与流程的执行,同时依托 IT 与 AI 专家确保技术实现的高标准。这种合作模式也反映了 delphi 一贯强调的“协作性”理念。 总结 delphi GmbH 是一家在健康促进领域深耕多年的德国企业,以科学性与实用性著称。近年来,公司通过 SuchtGPT 等项目,积极探索人工智能在健康服务中的应用,致力于为毒瘾等问题提供创新、数字化的解决方案。凭借其专业团队和与时俱进的技术战略,delphi 在德国乃至全球的健康科技领域占据了重要地位。 这家企业不仅是健康促进的践行者,更是 AI 技术在公共福祉领域应用的先锋。未来,随着项目的推进,delphi 的影响力有望进一步扩大。 (信息来源:dephi官网)
1 个月前
德国Comarch ERP Enterprise 是一款全面的企业资源规划 (ERP) 系统,专为寻求在流程方面提高 ERP 系统用户技术进步水平的企业而设计。它是一款现代化的 ERP 系统,具有高度的灵活性和可扩展性,能够满足各种规模和行业的企业的需求。 Comarch企业软件公司最近撰文:“ChatERP: Quantensprung im Enterprise-Resource-Planning”,即ChatERP在企业资源规划中的巨大进步。这份白皮书提到ERP系统是企业的核心,整合了关键业务流程和数据。过去,AI在ERP中的应用成本高且复杂,主要适用于大企业。但生成式AI和大型语言模型(如ChatGPT)的出现改变了这一状况,使得中小企业也能利用AI提升竞争力。这里的关键点是生成式AI降低了使用门槛,使得ERP中的AI助手变得可行。 1. 引言与背景 ERP系统的重要性:作为企业核心,整合关键业务流程(生产、采购、销售等)及数据(客户、订单、库存等)。AI在ERP中的演变:传统AI(如机器学习)成本高、数据需求大,仅适用于大企业;生成式AI(如ChatGPT)通过大型语言模型(LLM)降低门槛,使中小企业也能利用AI提升竞争力。ChatERP的定位:Comarch ERP Enterprise(6.4+版本)内置的多语言AI助手,通过自然语言交互革新ERP使用方式。 2. 改善可用性与降低使用障碍 自然语言交互:用户可通过对话形式与ERP系统互动,支持多语言,会话上下文感知。 动态帮助系统:基于RAG(检索增强生成)技术,AI助手深度理解ERP系统细节,无需额外训练。替代静态文档,提供实时、步骤化指导(如创建新文章、导航功能)。 降低学习成本:新用户快速上手,缩短培训时间;有经验用户更快掌握新功能。减少对IT支持的依赖,释放IT团队资源用于创新任务。 3. 通过语音/文本命令高效控制应用 多模态交互:支持传统UI操作与语音/文本指令结合,提升效率。应用场景: 快速导航:直接跳转深层功能(如“打开分类为家居用品的文章”)。数据操作:创建/打开记录(如“为Mustermann公司新建订单”并预填数据)。自动化任务:处理重复性工作(数据清理),但关键操作需人工审核。 类似消费级助手(如Siri):但针对企业复杂场景优化,通过API集成ERP功能。 4. 通过聊天探索ERP数据价值 数据查询与分析: 自然语言生成报告(如“显示上季度各地区销售额”),自动生成图表或摘要。预测与洞察:销售趋势预测、库存优化建议。 降低数据分析门槛:非技术用户无需复杂技能即可获取业务洞察,支持数据驱动决策。 5. 安全与合规 权限管理:通过架构设计确保数据访问合规性(如Berechtigungen权限控制)。数据隐私:企业数据仅用于内部处理,符合GDPR等法规。 6. 实施建议与结论 采用策略: 选择兼容现有系统的AI助手(如ChatERP),分阶段部署,从小任务开始。培训员工适应新交互方式,结合传统与AI操作以最大化效率。 未来潜力: 持续优化AI模型,扩展应用场景(如供应链优化、客户行为分析)。推动ERP从“记录系统”向“智能决策支持系统”转型。 核心价值总结: ChatERP通过自然语言交互、动态帮助、语音控制及智能数据分析,显著提升ERP系统的易用性、效率和决策支持能力,尤其助力中小企业以更低成本实现数字化转型。
2 个月前
《The Singularity Is Near: When Humans Transcend Biology》(《奇点临近:当人类超越生物学》)是未来学家 Ray Kurzweil(雷·库兹韦尔)于 2005 年出版的一本重要著作。这本书提出了“技术奇点”(Technological Singularity)的概念,即人工智能、纳米技术、生物技术和神经科学等技术将在21世纪中叶实现指数级增长,最终超越人类的智力和生物学极限,从而引发根本性的社会和生物进化变革。 核心观点 技术的指数级增长 库兹韦尔提出 “加速回报定律”(Law of Accelerating Returns),认为技术进步的速度是指数级的,而非线性的。计算机、人工智能、生物技术、纳米技术等领域的突破会越来越快。 人工智能将超越人类智能 由于计算能力的提升,人工智能将在2045年左右达到“技术奇点”(Singularity),即人工智能的智能水平将超过人类,甚至开始自我改进,从而引发不可预测的变革。 人机融合与不朽 人类将通过增强大脑、上传意识、基因改造和纳米技术等手段,实现“数字不朽”(Digital Immortality)。人的智能将与机器结合,最终人类不再受限于生物学形式。 纳米技术和生物技术的突破 纳米机器人(Nanobots)将进入人体,修复细胞、治疗疾病,并增强大脑功能,使人类拥有超越生物极限的能力。 伦理与社会影响 库兹韦尔承认技术奇点带来的挑战,包括伦理问题、社会不平等、人工智能的控制问题等,但他认为这些问题可以通过技术和社会机制来解决。 影响力与争议 该书被认为是技术乐观主义的代表之一,影响了人工智能、未来学和硅谷企业(如谷歌)的发展理念。 但也有批评者认为,库兹韦尔过分乐观,对技术发展过于自信,而忽视了技术、社会、伦理和资源限制的现实挑战。 结论 《奇点临近》不仅是一本关于未来科技的畅销书,更是一本影响深远的预言书。它对人工智能、人机融合、生命延续等话题提出了大胆的设想,至今仍在影响科技界和哲学界的讨论。
2 个月前
它的名字叫“凤凰”,它有潜力彻底改变农业——霍恩海姆大学研发的这款高科技农业机器人,能够利用人工智能自主耕作田间。 乍一看,它似乎并不起眼,但“凤凰”农业机器人可以自主耕种田地、照料果园,甚至还能完成更多任务,因为它内部搭载了先进的电子技术与人工智能。霍恩海姆大学植物生产过程工程系主任 Hans W. Griepentrog 和他的研究团队,将 Phoenix 研发成一种数字化农业工具,旨在为行业树立新标准。其潜力显然也得到了柏林方面的认可。 2022年,这款机器人在联邦政府数字峰会上亮相,并受到德国总理奥拉夫·朔尔茨的亲自关注。会上,Griepentrog 表达了他的核心观点:“我们希望展现,农业科学在数字化领域正取得特别创新的进展。” 其目标是促进未来农业与环境保护、物种保护之间的协调。 机器人能够区分杂草与农作物 在霍恩海姆大学的试验田里,这款机器人已被训练以大幅减少化肥和农药的使用。Griepentrog 解释道:“得益于智能传感器技术,它可以精准区分栽培作物和杂草。” 机器人配备摄像头和激光传感器来记录植物,并借助人工智能算法实时分析数据。 其核心技术之一是机械除草。用于除草的工具安装在机器后部。此外,霍恩海姆大学的研究团队还开发了一款应用程序,使 Phoenix 具备白菜种植和养护能力。Griepentrog 说道:“这样的技术在过去是前所未有的。” 与传统方式不同,这款机器人不是用刀片大面积翻耕土壤,而是每隔 60 厘米精准打开刀片,让一颗幼苗通过有机玻璃管准确落入开口处的土壤中。这意味着只有在必要时才会进行土壤干预,从而降低设备的牵引力需求,减少能源消耗。 无土壤压实、无气候相关污染 Phoenix 还能自主播种单粒作物,这也是一项突破性创新。Griepentrog 和团队自主研发了传感器、工具及精准的导航系统,至少在基础版本中如此。 这款小型农业机器人重 420 公斤,相较于传统的大型拖拉机,其行驶速度较慢,但作业精度更高。Griepentrog 解释道:“这减少了劳动力成本,提高了自动化水平,同时避免了大型机械对土壤造成的压实问题。” 另一个优势是环保性:“我们不会产生任何气候相关的污染物。” Phoenix 采用电动橡胶履带驱动,农民可以通过光伏发电或利用沼气转换电能,为机器人提供能源。 这款全能机器人还能自动修剪果树 如果配备合适的工具,Phoenix 还能修剪果树。它能够利用人工智能分析果园状况,判断哪些树木需要修剪,并自动操作锯子完成作业。然而,研究团队的目标远不止于此。 除了进一步优化杂草识别技术外,Phoenix 未来还将学习“根下施肥”技术,特别适用于长期干旱后干燥的土壤。该技术旨在将养分直接输送至土壤深处,而非仅撒在土壤表层,从而提高肥料利用率。Griepentrog 表示:“这是一项完全革命性的技术。” 通过使用不含合成化学物质的矿物肥料,这款机器人或将推动农业迈向有机与传统农业结合的“中间道路”。 目前,多个研究项目正在探索 Phoenix 的不同应用场景。联邦研究部为“无化学合成植物保护的农业 4.0” 研究项目提供了 4.5 年的资金支持,总额达 530 万欧元,其中 450 万欧元拨给霍恩海姆大学。该校负责协调此项目,并参与 20 个专业领域的 16 个子项目。此外,白菜的可持续种植研究属于“可持续小规模农业的数字价值链”联合项目的一部分,霍恩海姆大学已从联邦食品和农业部获得 200 万欧元的资助。 (图片来源:德国 Hochenheim 大学)
2 个月前
借助SAP Business AI,您可以在面对挑战时获得支持,并实现潜在的数百万欧元成本节省。 SAP提供具备直观、灵活且强大AI功能的应用程序,帮助客户优化业务流程。 通过AI代理和全面的流程上下文提升企业整体效率 Joule中的AI代理能够理解您的业务流程,并安全、受控地访问您的数据。凭借超过1,300种技能,它们可使导航和交易任务的执行速度提高多达90%,并跨所有企业流程协同工作,以解决最复杂的任务。 将企业生产力提高30% SAP目前拥有130多个活跃的AI场景,并计划到2025年底增加至400个,为各个业务领域提供广泛的AI解决方案,助您更快、更高效地达成目标。 领先AI供应商为您的个性化业务需求提供定制支持 借助创新的AI技术以及我们顶级合作伙伴的大型语言模型,SAP Business AI可为您提供无缝集成的智能解决方案。 大幅提高企业团队的工作效率:在供应链、财务、采购、HR、销售等业务领域,创造切实的价值。 1,借助AI构建更敏捷、更具韧性且以客户为中心的供应链 通过优化运营、构建高效供应链并促进可持续增长的AI,供应链团队可以实现更优表现。 高效、敏捷且具备韧性的供应链比以往任何时候都更为重要。AI可帮助您获取深刻洞察力,提高供应链的韧性,确保全球物流畅通无阻。您可以充分利用日益复杂的供应链,预测风险并采取即时纠正措施。快速评估风险和潜在延误,关注最关键的货运任务,并确保按时交付。 更快发现错误 及早识别制造过程中的偏差,提高员工生产力,确保质量一致性,并将检验成本降低25%²。 降低50%²的交付成本 自动化入库处理以降低物流成本,检测异常情况,并自动录入数据以加速处理。 2,利用AI优化财务管理,提高收入,增强风险控制 财务团队可借助AI优化运营现金流、提高收入增长,并优化净利润率,为企业创造真正的价值。 应收账款核对工作量减少71% 消除人工付款核对,实现AI驱动的对账和付款通知提取,优化应收账款管理。 降低因欺诈造成的收入损失 利用AI与SAP S/4HANA Cloud Private Edition中的SAP Business Integrity Screening,提前识别并防范欺诈行为。 3,借助AI优化采购支出、降低风险并提升供应链效率 利用Business AI提高供应商绩效和运营效率,同时节省成本。 市场竞争分析速度提升90% 借助AI优化市场调研和供应商选择,加快品类策略制定。 采购流程信息搜索速度提高95% 通过Joule的自然语言界面快速查找采购数据,加速决策制定。 外部职位描述创建速度加快85% 将要点转化为详细的职位描述,并翻译成20多种语言。借助智能筛选,精准匹配顶尖人才。 4,利用AI赋能人力资源,使员工成功并提升企业敏捷性 人力资源团队可利用AI提升员工参与度和留存率,更快招聘合适人才,并节省成本。 日常HR任务完成速度提高90% Joule集成自然语言处理,可轻松导航SAP SuccessFactors模块,快速完成招聘、入职、薪资发放等任务。 申请审核速度提升80% 加快招聘决策,通过AI筛选候选人,使其资质与职位要求精准匹配。 5,利用AI提高销售和服务效率,提供卓越客户体验 通过降低获客成本、优化销售周期并提升客户忠诚度,提高企业收入。 SAP Business AI for Customer Experience助力销售、服务和营销全流程的智能化,借助Joule释放洞察力,增强业务影响力,提供个性化体验,助力企业提升客户互动质量。 显著缩短案件转办和查询时间 利用Joule代理自动分类客户案例,主动提供答案,优化销售和服务质量。 销售例行任务完成速度提高80% 在SAP Sales Cloud中与Joule Copilot“对话”,利用智能分析将潜在客户转化为实际客户。 6,利用AI优化营销和电商,提升客户互动 利用AI扩展全渠道互动,提供个性化体验,优化电商产品搜索,提高企业收入和利润率。 目标客户群体细分速度提高90%² 借助Joule快速创建客户群体细分,利用AI轻松制定和衡量营销旅程及关键成功指标。 实现更精准的个性化推荐 基于客户行为、购买历史和搜索模式提供个性化推荐。分析库存、销售趋势和订单历史,预测需求并优化库存水平。 7,利用AI提升IT和开发能力,加速产品创新 通过AI提高企业业务连续性,提升生产力和系统可用性,减少安全事故,并提高IT项目成功率。 SAP BTP凭借生成式AI,优化数据管理、自动化流程、推动创新,并提升开发人员效率,让您的团队实现更大成就。 应用程序开发成本降低30% 借助SAP Build Code的AI驱动编码工具,加速应用开发。 SAP应用管理效率提升75% 通过SAP Automation Pilot的智能提示,自动化工作流,减少手动DevOps任务。 (信息来源:SAP官网)
2 个月前
德国心血管研究中心(DZHK)的跨学科团队在一项长期人口研究中发现,人工智能(AI)能够根据心电图数据确定心脏的生物年龄。与此同时,人工智能可以对心血管风险的增加提供早期预警。 利用大量长期数据进行人工智能分析 研究人员使用了德国一项长达 20 多年的人口研究的长期数据。该 AI 模型首先使用来自巴西的心电图数据进行训练,然后应用于欧洲队列。 结果显示,预测的心脏生物年龄与受试者的实际健康状况高度一致。尤其令人兴奋的是,这种方法是非侵入性的,仅通过分析心电图数据即可进行。 心电图年龄与疾病风险的关系 研究发现,心电图年龄超过实际年龄8岁以上的人,发生心律失常、心力衰竭和死亡率的风险显著增加。此外,通过考虑几次连续的心电图测量,可以做出更精确的风险评估。 死亡风险的增加尤为显著:当不仅使用单次心电图测量值而是使用一系列测量值进行分析时,死亡风险从 1.43 上升到 1.65。这强调了长期持续监测心脏健康的重要性。 通过人工智能诊断实现个性化预防 研究结果表明,人工智能支持的诊断系统可以帮助在早期识别心血管风险增加的人。早期发现可以在严重疾病发生之前采取有针对性的预防措施。从长远来看,这项技术可以融入常规健康检查中,帮助医疗专业人员识别有风险的患者。 “我们的研究表明,人工智能能够检测到心电图上表明心脏老化加速的细微变化。这可能为个性化医疗开辟新的可能性,并有助于在早期预防心血管疾病,”这项研究的主要作者、哥廷根大学医学中心医学信息学研究所的 Philip Hempel 先生解释道。 人工智能模型的透明度和可解释性 这项研究的一个重要方面是人工智能系统的透明度。 “通过将经典的心电图参数整合到我们的分析中,我们将人工智能技术与经过验证的循证医学结合起来。这不仅为医生提供了宝贵的附加信息,也为他们的诊断提供了透明的基础,”Hempel先生 解释道。这种方法增加了对人工智能技术的信任,并使患者护理变得更加明智和易于理解。 该研究由哥廷根大学医学中心指导并与 DZHK 合作进行。来自德国、瑞典和巴西的研究人员共同进行了此项分析。基础数据来自 SHIP (波美拉尼亚健康研究)所,这是一项针对德国北部人口的全面长期研究活动。 (文章来源:德国工程师网站)
2 个月前
随着全球人工智能竞争的加剧,德国正在制定战略,力图与美国和中国等全球领跑者竞争。然而,这一计划是否能够取得成功,仍有待观察。 德国的人工智能发展主要围绕三个关键点展开:可信赖的技术、工业数据的利用和欧洲内部的合作。这些被视为德国在全球AI竞赛中追赶其他大国的核心支柱。 在全球范围内,人工智能的突破正在迅速改变各个行业,但目前领先的AI技术并非来自德国,而是由美国和中国的少数几家公司主导。德国总理奥拉夫·朔尔茨在法兰克福举行的数字峰会上坦言:“现实是,我们在这个领域的发展停滞了太久。”不过,他也强调,现在唱衰德国并不合适,因为德国的创新能力、创造力和勤劳精神依然存在。 德国政府的执政联盟——社会民主党、绿党和自由民主党,近日共同勾勒了保持德国AI竞争力的中期计划,目标是实现“技术主权”,即摆脱对外国科技巨头的依赖。 目前,德国在人工智能研究领域的基础较为扎实,但在将研究转化为实际应用方面一直较为薄弱。朔尔茨指出,许多公司在成长过程中缺乏足够的风险投资,导致创新难以转化为商业模式。因此,他呼吁更多的投资来推动AI技术在德国的应用。 尽管如此,德国的人工智能领域并非全无进展。据Bitkom的最新研究表明,越来越多的德国人认为人工智能是机遇,而不是威胁。报告还显示,20%的德国企业已经将AI集成到其运营中,较去年增加了六个百分点。这一进步部分得益于政府资助的项目,例如以人为中心的人工智能生产工作未来中心(ZUKIPRO),该组织为中小企业和技术工人提供免费的AI咨询服务。 然而,德国大多数企业仍依赖美国公司提供的AI技术,如微软和谷歌的产品,这对德国实现“技术主权”的目标提出了挑战。德国经济部长罗伯特·哈贝克承认,实现这一目标还需要时间,但他指出,俄乌开战以来,德国对技术主权的重要性认识显著提高。他还强调,德国企业掌握着大量宝贵的工业数据,这将有助于德国在未来的AI浪潮中占据一席之地。 在这一背景下,欧洲合作被视为至关重要。哈贝克表示,仅靠德国的数据量难以支撑其在全球的竞争力,必须依赖整个欧洲的力量。作为欧洲战略的一部分,德国还希望成为可信赖AI技术的全球领导者,即严格遵守用户权利的技术,这将比海外产品更具信任度。 欧盟的AI法案于2024年8月正式生效,成为全球最为严格的人工智能法律之一。该法案对高风险AI应用实施了严格的监管,未来如何利用这一框架保持在全球AI竞争中的优势,将成为德国政府和企业必须面对的挑战。 (文章来源:德国中文网)
2 个月前
1. 博世AI工具开发的核心理念与目标 博世集团作为全球领先的技术和服务供应商,始终秉持“科技成就生活之美”的理念,致力于通过人工智能(AI)技术解决全球性挑战,提升生活质量。博世的AI开发目标聚焦于两大方向:一是推动AI在核心业务中的应用,如智能出行、工业技术和消费品领域;二是通过技术创新增强公众对数字技术的信任,确保AI应用的伦理性和安全性。 2. 博世AI工具的主要应用领域 博世的AI工具已广泛应用于多个领域,展现了其技术的前瞻性和实用性: (1)智能出行 自动驾驶与辅助驾驶:博世开发了基于AI的多功能摄像头,能够准确识别行人、车辆和道路标志,提升驾驶安全性。 生成式AI的应用:与微软合作,博世探索生成式AI在自动驾驶中的应用,通过模拟复杂路况(如降雪)加速系统训练,提升车辆应对突发情况的能力。 (2)智能家居与健康 智能婴儿床:博世推出的智能婴儿床搭载AI和传感器,可监测婴儿的生命体征,并在异常情况(如哭闹或呼吸受阻)时发出提醒,荣获CES 2025创新奖。 智能传感器:博世的MEMS传感器集成AI算法,广泛应用于智能手机、可穿戴设备和智能家居,提供精准的数据分析和节能功能。 (3)工业技术与智能制造 生成式AI优化生产:博世利用生成式AI生成合成图像,加速光学检测系统的开发,将AI应用的部署时间从6-12个月缩短至几周。 AI辅助搜索引擎:内部开发的AskBosch平台通过自然语言处理技术,帮助员工快速检索公司内部数据,提升工作效率。 3. 博世AI工具的技术创新与突破 博世在AI工具开发中展现了多项技术创新: 边缘AI:博世的AI算法可直接在传感器内运行,无需依赖云端,显著降低延迟和功耗,同时保障数据隐私。 生成式AI:通过与微软、Aleph Alpha等企业合作,博世将生成式AI应用于自动驾驶、语音识别和制造业,推动行业变革。 AI伦理与信任:博世制定了AI道德准则,确保AI技术的透明性和安全性,增强公众对数字技术的信任。 4. 博世AI及软件的市场表现与未来展望 市场表现:博世的AI工具已取得显著成果,例如其MEMS传感器在2024年交付量超过10亿颗,市场占有率连续四年位居全球第一。 未来目标:博世计划到2030年实现软件和服务相关销售额超过60亿欧元,其中三分之二将来自智能出行业务。 5. 总之 博世在AI工具开发和应用上的创新实践,不仅推动了技术进步,也为全球社会带来了切实的便利与安全保障。未来,博世将继续深耕AI领域,致力于通过技术创新解决全球性挑战,实现可持续发展目标。